POWERFUL, ROTATING DISK WINDS FROM STELLAR-MASS BLACK HOLES

We present an analysis of ionized X-ray disk winds observed in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generated in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe XXV line is found to be shaped by contributions from the intercombination line (in absorption), and the Fe XXVI line is detected as a spin-orbit doublet. The data require 2-3 absorption zones, depending on the source. The fastest components have velocities approaching or exceeding 0.01c, increasing mass outflow rates and wind kinetic power by orders of magnitude over prior single-zone models. The first-order spectra require re-emission from the wind, broadened by a degree that is loosely consistent with Keplerian orbital velocities at the photoionization radius. This suggests that disk winds are rotating with the orbital velocity of the underlying disk, and provides a new means of estimating launching radii -- crucial to understanding wind driving mechanisms. Some aspects of the wind velocities and radii correspond well to the broad-line region (BLR) in active galactic nuclei, suggesting a physical connection. We discuss these results in terms of prevalent models for disk wind production and disk accretion itself, and implications for massive black holes in active galactic nuclei.

[1]  Yasushi Fukazawa,et al.  Suzaku Discovery of Iron Absorption Lines in Outburst Spectra of the X-Ray Transient 4U 1630-472 , 2006, astro-ph/0610496.

[2]  Yoshiharu Namba,et al.  The ASTRO-H X-ray astronomy satellite , 2014, Astronomical Telescopes and Instrumentation.

[3]  I. Hubeny,et al.  A METHOD FOR THE STUDY OF ACCRETION DISK EMISSION IN CATACLYSMIC VARIABLES. I. THE MODEL , 2011, 1105.0851.

[4]  Shai Kaspi,et al.  The Ionized Gas and Nuclear Environment in NGC 3783. II. Averaged Hubble Space Telescope/STIS and Far Ultraviolet Spectroscopic Explorer Spectra , 2003, astro-ph/0506323.

[5]  P. Roche,et al.  A long-term optical-X-ray correlation in 4U 1957+11 , 2009, 0911.4501.

[6]  L. Miller,et al.  Tracing a Disk Wind in NGC 3516 , 2008, 0803.0080.

[7]  G. Ponti,et al.  Ubiquitous equatorial accretion disc winds in black hole soft states , 2012, 1201.4172.

[8]  Shuang-Nan Zhang,et al.  Measuring the black hole masses in accreting X-ray binaries by detecting the Doppler orbital motion of their accretion disk wind absorption lines , 2012, 1201.3451.

[9]  N. Schulz,et al.  THE ACCRETION DISK CORONA AND DISK ATMOSPHERE OF 4U 1624−490 AS VIEWED BY THE CHANDRA-HIGH ENERGY TRANSMISSION GRATING SPECTROMETER , 2009 .

[10]  H. Murakami,et al.  Chandra High-Resolution Spectroscopy of the Absorption-Line Features in the Low-Mass X-Ray Binary GX 13+1 , 2004 .

[11]  K. Yamaoka,et al.  GRS 1915+105 IN “SOFT STATE”: NATURE OF ACCRETION DISK WIND AND ORIGIN OF X-RAY EMISSION , 2009, 0901.1982.

[12]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[13]  J. Chiang,et al.  DISCOVERY OF HIGH-ENERGY GAMMA-RAY EMISSION FROM THE BINARY SYSTEM PSR B1259−63/LS 2883 AROUND PERIASTRON WITH FERMI , 2011, 1103.4108.

[14]  K. Nandra,et al.  The XMM-Newton Iron Line Profile of NGC 3783 , 2003, astro-ph/0310820.

[15]  L. Brenneman,et al.  Constraining Black Hole Spin via X-Ray Spectroscopy , 2006, astro-ph/0608502.

[16]  P. Jonker,et al.  Variable doppler shifts of the thermal wind absorption lines in low-mass x-ray binaries , 2013, 1311.0874.

[17]  R. Narayan,et al.  Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991 , 1997 .

[18]  M. Page,et al.  The nature and origin of Seyfert warm absorbers , 2004, astro-ph/0411297.

[19]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[20]  M. Giustini,et al.  ON THE DIVERSITY AND COMPLEXITY OF ABSORPTION LINE PROFILES PRODUCED BY OUTFLOWS IN ACTIVE GALACTIC NUCLEI , 2012, 1208.6044.

[21]  J. Lee,et al.  A Chandra HETGS Spectral Study of the Iron K Bandpass in MCG –6-30-15: A Narrow View of the Broad Iron Line , 2005, astro-ph/0506082.

[22]  Jelle S. Kaastra,et al.  Interstellar medium composition through X-ray spectroscopy of low-mass X-ray binaries , 2013 .

[23]  J. Lee,et al.  The First High-Resolution X-Ray Spectrum of Cygnus X-1: Soft X-Ray Ionization and Absorption , 2001, astro-ph/0109236.

[24]  P. Edwards,et al.  A LINK BETWEEN X-RAY EMISSION LINES AND RADIO JETS IN 4U 1630–47? , 2014, 1402.5140.

[25]  J. C. Shields,et al.  The Ionized Gas and Nuclear Environment in NGC 3783. I. Time-averaged 900 Kilosecond Chandra Grating Spectroscopy , 2002, astro-ph/0203263.

[26]  E. Cackett,et al.  A FAST X-RAY DISK WIND IN THE TRANSIENT PULSAR IGR J17480−2446 IN TERZAN 5 , 2011, 1101.2377.

[27]  J. Bell,et al.  X-ray-heated coronae and winds from accretion disks: Time-dependent two-dimensional hydrodynamics with adaptive mesh refinement , 1996 .

[28]  D. Proga,et al.  CORONAE AND WINDS FROM IRRADIATED DISKS IN X-RAY BINARIES , 2015, 1504.03328.

[29]  L. Wen,et al.  Orbital Modulation of X-Rays from Cygnus X-1 in its Hard and Soft States , 1999 .

[30]  J. Neilsen,et al.  Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105 , 2009, Nature.

[31]  H. F. Astrophysics,et al.  RADIATION PRESSURE AND MASS EJECTION IN ρ-LIKE STATES OF GRS 1915+105 , 2012, 1203.0301.

[32]  Marat Gilfanov,et al.  Mapping the Gas Temperature Distribution in Extended X-Ray Sources and Spectral Analysis in the Case of Low Statistics: Application to ASCA Observations of Clusters of Galaxies , 1996 .

[33]  J. N. Reeves,et al.  Evidence for ultra-fast outflows in radio-quiet AGNs - I. Detection and statistical incidence of Fe K-shell absorption lines , 2010, 1006.2858.

[34]  Ashley L. King,et al.  REGULATION OF BLACK HOLE WINDS AND JETS ACROSS THE MASS SCALE , 2012, 1205.4222.

[35]  D.Steeghs,et al.  THE NOT-SO-MASSIVE BLACK HOLE IN THE MICROQUASAR GRS1915+105 , 2013, 1304.1808.

[36]  D. Walton,et al.  Black hole feedback in the luminous quasar PDS 456 , 2015, Science.

[37]  Yoshiharu Namba,et al.  The ASTRO-H Mission , 2009, Astronomical Telescopes + Instrumentation.

[38]  Ronald A. Remillard,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[39]  U. Cambridge,et al.  The Accretion Disk Wind in the Black Hole GRO J1655–40 , 2008, 0802.2026.

[40]  Claudio Mendoza,et al.  SPECTRUM SYNTHESIS MODELING OF THE X-RAY SPECTRUM OF GRO J1655-40 TAKEN DURING THE 2005 OUTBURST , 2009, 0905.4206.

[41]  A. Fabian,et al.  High-Resolution Chandra HETGS and Rossi X-Ray Timing Explorer Observations of GRS 1915+105: A Hot Disk Atmosphere and Cold Gas Enriched in Iron and Silicon , 2001, astro-ph/0111132.

[42]  S. Tremaine,et al.  RELATIVISTIC REDSHIFTS IN QUASAR BROAD LINES , 2014, 1406.2468.

[43]  D. Steeghs,et al.  Simultaneous Chandra and RXTE Spectroscopy of the Microquasar H1743–322: Clues to Disk Wind and Jet Formation from a Variable Ionized Outflow , 2004, astro-ph/0406272.

[44]  Revealing the Dusty Warm Absorber in MCG –6-30-15 with the Chandra High-Energy Transmission Grating , 2001, astro-ph/0101065.

[45]  J. Neilsen,et al.  A HYBRID MAGNETICALLY/THERMALLY DRIVEN WIND IN THE BLACK HOLE GRO J1655−40? , 2012, 1202.6053.

[46]  D. Steeghs,et al.  THE DISK-WIND–JET CONNECTION IN THE BLACK HOLE H 1743−322 , 2012, 1208.4514.

[47]  C. McKee,et al.  Compton heated winds and coronae above accretion disks. I. Dynamics , 1983 .

[48]  A. Fabian,et al.  Understanding X‐ray reflection emissivity profiles in AGN: locating the X‐ray source , 2012, 1205.3179.

[49]  Jon M. Miller,et al.  WARM ABSORBERS AND OUTFLOWS IN THE SEYFERT-1 GALAXY NGC 4051 , 2011, 1112.5126.

[50]  T. Dauser,et al.  Irradiation of an accretion disc by a jet: general properties and implications for spin measurements of black holes , 2013, 1301.4922.

[51]  University of Cambridge,et al.  CHANDRA SPECTROSCOPY OF MAXI J1305−704: DETECTION OF AN INFALLING BLACK HOLE DISK WIND? , 2013, 1306.2915.

[52]  J. Wilms,et al.  Absorption Of X-rays In The Interstellar Medium , 2000, astro-ph/0008425.

[53]  Norbert S. Schulz,et al.  High-Resolution X-Ray Spectroscopy of the Interstellar Medium. II. Neon and Iron Absorption Edges , 2006, astro-ph/0605674.

[54]  D. Proga,et al.  Numerical Simulations of Mass Outflows Driven from Accretion Disks by Radiation and Magnetic Forces , 2003 .

[55]  W. Brandt,et al.  The Discovery of Broad P Cygni X-Ray Lines from Circinus X-1 with the Chandra High-Energy Transmission Grating Spectrometer , 2000, astro-ph/0007406.

[56]  D. M. Crenshaw,et al.  FEEDBACK FROM MASS OUTFLOWS IN NEARBY ACTIVE GALACTIC NUCLEI. I. ULTRAVIOLET AND X-RAY ABSORBERS , 2012, 1204.6694.

[57]  A. Dorodnitsyn Profiles of spectral lines from failed and decelerated winds from neutron stars and black holes , 2010, 1102.2198.

[58]  Y. Krongold,et al.  The Compact, Conical, Accretion-Disk Warm Absorber of the Seyfert 1 Galaxy NGC?4051 and Its Implications for IGM-Galaxy Feedback Processes , 2007, astro-ph/0702399.

[59]  A transient large-scale relativistic radio jet from GX 339−4 , 2003, astro-ph/0311452.

[60]  S. N.S,et al.  THE FIRST HIGH-RESOLUTION X-RAY SPECTRUM OF CYGNUS X-1 : SOFT X-RAY IONIZATION AND ABSORPTION , 2022 .

[61]  Nicholas E. White,et al.  X-ray fluorescence from the inner disc in Cygnus X-1 , 1989 .

[62]  P. Hopkins,et al.  Quasar feedback: more bang for your buck , 2009, 0904.0649.

[63]  H. F. Astrophysics,et al.  Accretion disc wind variability in the states of the microquasar GRS 1915+105 , 2011, 1112.1066.

[64]  John Raymond,et al.  The magnetic nature of disk accretion onto black holes , 2006, Nature.

[65]  D. Walton,et al.  NuSTAR REVEALS RELATIVISTIC REFLECTION BUT NO ULTRA-FAST OUTFLOW IN THE QUASAR PG 1211+143 , 2015, 1501.01663.

[66]  T. Fragos,et al.  THE ORIGIN OF BLACK HOLE SPIN IN GALACTIC LOW-MASS X-RAY BINARIES , 2014, 1408.2661.

[67]  M. Rupen,et al.  AN EXTREME X-RAY DISK WIND IN THE BLACK HOLE CANDIDATE IGR J17091−3624 , 2011, 1112.3648.

[68]  Atomic Data for Permitted Resonance Lines of Atoms and Ions from H to Si, and S, Ar, Ca, and Fe , 1996, atom-ph/9604003.