Collective Data Mining From Distributed , Vertically PartitionedFeature

This paper develops collective data mining, a unique approach for nding patterns from a network of databases, each with a distinct feature space. This paper addresses both distributed cooperative learning at the global level and also learning at the local data sites. In addition to developing the foundation of the collective data mining , it also presents BODHI, a distributed data mining (DDM) system that implements the collective data mining approach. Although the architecture is ideal for accommodating diierent in-ductive learning algorithms for data analysis at diierent sites, this paper suggests one scalable approach using a gene expression based evolutionary algorithm. This approach is used for distributed fault detection in an electrical power distribution network. Experimental results demonstrating the success of the developed system are also presented.

[1]  G. G. Ide The world of knowledge. , 1934 .

[2]  A. F. Adams,et al.  The Survey , 2021, Dyslexia in Higher Education.

[3]  J. E. Gibson,et al.  Adaptive Learning Systems , 2017 .

[4]  John Daniel. Bagley,et al.  The behavior of adaptive systems which employ genetic and correlation algorithms : technical report , 1967 .

[5]  R. Rosenberg Simulation of genetic populations with biochemical properties : technical report , 1967 .

[6]  E. Fantino The Analysis of Behavior. , 1971 .

[7]  Daniel Raymond Frantz,et al.  Nonlinearities in genetic adaptive search. , 1972 .

[8]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[9]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[10]  A. D. Bethke,et al.  Comparison of genetic algorithms and gradient-based optimizers on parallel processors : efficiency of use of processing capacity , 1976 .

[11]  Stephen F. Smith,et al.  A learning system based on genetic adaptive algorithms , 1980 .

[12]  Stephen F. Smith,et al.  Flexible Learning of Problem Solving Heuristics Through Adaptive Search , 1983, IJCAI.

[13]  David E. Goldberg,et al.  Alleles, loci and the traveling salesman problem , 1985 .

[14]  J. David Schaffer,et al.  An Adaptive Crossover Distribution Mechanism for Genetic Algorithms , 1987, ICGA.

[15]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[16]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[17]  David E. Goldberg,et al.  Genetic Algorithms and Walsh Functions: Part I, A Gentle Introduction , 1989, Complex Syst..

[18]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[19]  James R. Levenick Inserting Introns Improves Genetic Algorithm Success Rate: Taking a Cue from Biology , 1991, ICGA.

[20]  Richard J. Enbody,et al.  Further Research on Feature Selection and Classification Using Genetic Algorithms , 1993, ICGA.

[21]  John G. Gammack,et al.  Searching databases using parallel genetic algorithms on a transputer computing surface , 1993, Future Gener. Comput. Syst..

[22]  Salvatore J. Stolfo,et al.  Toward parallel and distributed learning by meta-learning , 1993 .

[23]  Salvatore J. Stolfo,et al.  Experiments on multistrategy learning by meta-learning , 1993, CIKM '93.

[24]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[25]  Stephen F. Smith,et al.  Using Coverage as a Model Building Constraint in Learning Classifier Systems , 1994, Evolutionary Computation.

[26]  Franciszek Seredynski,et al.  Loosely Coupled Distributed Genetic Algorithms , 1994, PPSN.

[27]  Filippo Neri,et al.  A Parallel Genetic Algorithm for Concept Learning , 1995, ICGA.

[28]  Peter Edwards,et al.  Distributed Learning: An Agent-Based Approach to Data-Mining , 1995 .

[29]  Salvatore J. Stolfo,et al.  A Comparative Evaluation of Voting and Meta-learning on Partitioned Data , 1995, ICML.

[30]  Salvatore J. Stolfo,et al.  Sharing Learned Models among Remote Database Partitions by Local Meta-Learning , 1996, KDD.

[31]  Jim Smith,et al.  Recombination strategy adaptation via evolution of gene linkage , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[32]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[33]  Hillol Kargupta,et al.  The Gene Expression Messy Genetic Algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[34]  James A. Momoh,et al.  An implementation of a hybrid intelligent tool for distribution system fault diagnosis , 1996 .

[35]  Salvatore J. Stolfo,et al.  JAM: Java Agents for Meta-Learning over Distributed Databases , 1997, KDD.

[36]  F. Provost A Survey of Methods for Scaling Up Inductive Learning Algorithms , 1997 .

[37]  Adly A. Girgis,et al.  Automated fault location and diagnosis on electric power distribution feeders , 1997 .

[38]  L. Darrell Whitley,et al.  Messy Genetic Algorithms for Subset Feature Selection , 1997, ICGA.

[39]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[40]  Cosimo Anglano,et al.  A Network Genetic Algorithm for Concept Learning , 1997, ICGA.

[41]  Kenji Yamanishi,et al.  Distributed cooperative Bayesian learning strategies , 1997, COLT '97.

[42]  Pattie Maes,et al.  Challenger: a multi-agent system for distributed resource allocation , 1997, AGENTS '97.

[43]  Sandip Sen,et al.  Developing an Automated Distributed Meeting Scheduler , 1997, IEEE Expert.

[44]  I. Hamzaoglu H. Kargupta,et al.  Distributed Data Mining Using An Agent Based Architecture , 1997, KDD 1997.

[45]  Wai Lam,et al.  Distributed data mining of probabilistic knowledge , 1997, Proceedings of 17th International Conference on Distributed Computing Systems.

[46]  Filippo Menczer,et al.  Adaptive information agents in distributed textual environments , 1998, AGENTS '98.

[47]  Bryan Horling,et al.  A Next Generation Information Gathering Agent , 1998 .

[48]  Gang Wang,et al.  Revisiting the GEMGA: scalable evolutionary optimization through linkage learning , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[49]  Salvatore J. Stolfo,et al.  Toward Scalable Learning with Non-Uniform Class and Cost Distributions: A Case Study in Credit Card Fraud Detection , 1998, KDD.

[50]  Victor R. Lesser,et al.  Problem structure and subproblem sharing in multi-agent systems , 1998, Proceedings International Conference on Multi Agent Systems (Cat. No.98EX160).

[51]  Vincent Cho,et al.  Towards Real Time Discovery from Distributed Information Sources , 1998, PAKDD.

[52]  Chris Nowak,et al.  Multiple Databases, Partial Reasoning, and Knowledge Discovery , 1998, PAKDD.

[53]  Hillol Kargupta,et al.  A perspective on the foundation and evolution of the linkage learning genetic algorithms , 2000 .