Comparative net energy analysis of renewable electricity and carbon capture and storage

[1]  M. Raugei Net energy analysis must not compare apples and oranges , 2019, Nature Energy.

[2]  M. Stefancich,et al.  Evaluating the factors that led to low-priced solar electricity projects in the Middle East , 2018, Nature Energy.

[3]  Grahame Smith,et al.  The way forward , 2018, Reaching Net Zero.

[4]  Solomon F. Brown,et al.  Carbon capture and storage (CCS): the way forward , 2018 .

[5]  J. C. van den Bergh,et al.  Implications of net energy-return-on-investment for a low-carbon energy transition , 2018, Nature Energy.

[6]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[7]  Sgouris Sgouridis,et al.  Constant elasticity of substitution functions for energy modeling in general equilibrium integrated assessment models: a critical review and recommendations , 2017, Climatic Change.

[8]  Rembrandt H.E.M. Koppelaar,et al.  Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization , 2017 .

[9]  Diego Luca de Tena,et al.  Integrated modelling of variable renewable energy-based power supply in Europe , 2017 .

[10]  Niall Mac Dowell,et al.  CO2 capture and storage (CCS) cost reduction via infrastructure right-sizing , 2017 .

[11]  Niall Mac Dowell,et al.  The role of CO2 purification and transport networks in carbon capture and storage cost reduction , 2017 .

[12]  Pierluigi Mancarella,et al.  UvA-DARE ( Digital Academic Repository ) Energy Return on Energy Invested ( ERoEI ) for photovoltaic solar systems in regions of moderate insolation , 2017 .

[13]  Vasilis Fthenakis,et al.  The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systems—A Timely Update , 2016 .

[14]  Christian Breyer,et al.  On the role of solar photovoltaics in global energy transition scenarios , 2016 .

[15]  Keywan Riahi,et al.  Carbon budgets and energy transition pathways , 2016 .

[16]  Pericles Pilidis,et al.  A Preliminary Assessment of the Initial Compression Power Requirement in CO2 Pipeline “Carbon Capture and Storage (CCS) Technologies” , 2016 .

[17]  Mark Z. Jacobson,et al.  Flexibility mechanisms and pathways to a highly renewable US electricity future , 2016 .

[18]  U. Bardi,et al.  The sower’s way: quantifying the narrowing net-energy pathways to a global energy transition , 2016, 1602.01203.

[19]  D. Kammen,et al.  A commercialization strategy for carbon-negative energy , 2016, Nature Energy.

[20]  David Reiner,et al.  Learning through a portfolio of carbon capture and storage demonstration projects , 2016, Nature Energy.

[21]  A. Faaij,et al.  The influence of uncertainty in the development of a CO2 infrastructure network , 2015 .

[22]  Sally M. Benson,et al.  Hydrogen or batteries for grid storage? A net energy analysis , 2015 .

[23]  Defne Apul,et al.  Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis , 2015 .

[24]  Michael Koller,et al.  Review of grid applications with the Zurich 1 MW battery energy storage system , 2015 .

[25]  P. Kazempoor,et al.  Novel electrical energy storage system based on reversible solid oxide cells: System design and operating conditions , 2015 .

[26]  O. Edenhofer,et al.  Integration costs revisited – An economic framework for wind and solar variability ☆ , 2015 .

[27]  Rui Li,et al.  EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China , 2015 .

[28]  Sally M. Benson,et al.  A better currency for investing in a sustainable future , 2014 .

[29]  J. Matsushima,et al.  Analysis of the Energy Balance of Shale Gas Development , 2014 .

[30]  Robert J. Brecha,et al.  Analyzing Major Challenges of Wind and Solar Variability in Power Systems , 2014 .

[31]  André Faaij,et al.  Uncertainty in Carbon Capture and Storage (CCS) deployment projections: a cross-model comparison exercise , 2014, Climatic Change.

[32]  Alexandre Poisson,et al.  Time Series EROI for Canadian Oil and Gas , 2013 .

[33]  Hossein Farahmand,et al.  Transmission expansion planning in Northern Europe in 2030—Methodology and analyses , 2013 .

[34]  Sally M. Benson,et al.  The energetic implications of curtailing versus storing solar- and wind-generated electricity , 2013 .

[35]  André Faaij,et al.  A state-of-the-art review of techno-economic models predicting the costs of CO2 pipeline transport , 2013 .

[36]  Lisa M. Colosi,et al.  Practical ambiguities during calculation of energy ratios and their impacts on life cycle assessment calculations , 2013 .

[37]  Michael Dale,et al.  A Comparative Analysis of Energy Costs of Photovoltaic, Solar Thermal, and Wind Electricity Generation Technologies , 2013 .

[38]  Sally M. Benson,et al.  On the importance of reducing the energetic and material demands of electrical energy storage , 2013 .

[39]  Andrea Ramírez,et al.  Environmental impact assessment of CCS chains – Lessons learned and limitations from LCA literature , 2013 .

[40]  Christian Breyer,et al.  Energy learning curves of PV systems , 2012 .

[41]  H. Jacobsen,et al.  Curtailment of renewable generation: Economic optimality and incentives , 2012 .

[42]  Andreas Brekke,et al.  Weighting of environmental trade-offs in CCS—an LCA case study of electricity from a fossil gas power plant with post-combustion CO2 capture, transport and storage , 2012, The International Journal of Life Cycle Assessment.

[43]  Nilay Shah,et al.  Solar-assisted Post-combustion Carbon Capture feasibility study , 2012 .

[44]  Andrea Schreiber,et al.  Meta‐Analysis of Life Cycle Assessment Studies on Electricity Generation with Carbon Capture and Storage , 2012 .

[45]  Göran Wall,et al.  A review of life cycle assessments on wind energy systems , 2012, The International Journal of Life Cycle Assessment.

[46]  Jon Freise,et al.  The EROI of Conventional Canadian Natural Gas Production , 2011 .

[47]  Charles A. S. Hall,et al.  Energy Return on Energy Invested for Tight Gas Wells in the Appalachian Basin, United States of America , 2011 .

[48]  David J. Murphy,et al.  Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels , 2011 .

[49]  Ali Abbas,et al.  HEN optimization for efficient retrofitting of coal-fired power plants with post-combustion carbon capture , 2011 .

[50]  Eric Williams,et al.  Potential economies of scale in CO2 transport through use of a trunk pipeline , 2010 .

[51]  Andrew Forbes Alexander Hoadley,et al.  Reducing the energy penalty of CO2 capture and compression using pinch analysis , 2010 .

[52]  Charles A. S. Hall,et al.  Year in review—EROI or energy return on (energy) invested , 2010, Annals of the New York Academy of Sciences.

[53]  Charles F. Harvey,et al.  The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the U.S. installed base , 2009 .

[54]  Manfred Fischedick,et al.  Comparison of carbon capture and storage with renewable energy technologies regarding structural, economic, and ecological aspects in Germany , 2007 .

[55]  H. S. Matthews,et al.  Extending the Boundaries of Life‐Cycle Assessment through Environmental Economic Input‐Output Models , 2000 .

[56]  Rembrandt H.E.M. Koppelaar,et al.  Global available wind energy with physical and energy return on investment constraints , 2018 .

[57]  André Faaij,et al.  A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage , 2018 .

[58]  E. J. Anthony,et al.  Carbon capture and storage update , 2014 .

[59]  Charles A. S. Hall,et al.  EROI of different fuels and the implications for society , 2014 .

[60]  Jianliang Wang,et al.  Comprehensive Analysis of the Energy Return on Investment (EROI) of China , 2013 .

[61]  Eric Masanet,et al.  A Framework for Environmental Assessment of CO2 Capture and Storage Systems , 2012 .

[62]  Cutler J. Cleveland,et al.  Meta-analysis of net energy return for wind power systems , 2010 .

[63]  B. Metz IPCC special report on carbon dioxide capture and storage , 2005 .