Investigation of Short-Term Evolution of Soil Characteristics over the Lake Chad Basin Using GRACE Data

In the Sahelian region, the West African Monsoon (WAM) is an important phenomenon for land water storage evolution, as demonstrated by The Gravity Recovery and Climate Experiment (GRACE) estimations. The Monsoon leads to an annual increase of the water mass. However, GRACE data also displays the existence of a semi-annual cycle whose its origin is still uncertain. This cycle is characterized by a gain of water mass at the beginning of the dry season. In this study, 10-days GRACE data are used to understand the characteristics of this semi-annual cycle. Investigations of the rainfall events, rivers discharge peaks, and the Lake Chad water level variations suggest that they are not at the origin of this cycle. However, MODIS evapotranspiration data display an increase each 6 months, during the rainy season, and at the same time as the semi-annual cycle estimated by GRACE. This increase occurs in regions where the amount of clays at the surface exceeds 30%. The link between both signals and the proportion of clays at the surface leads us to the conclusion that the seasonal variation of the vertical permeability of clays controls the amount of water present in the unsaturated zone.

[1]  J. Crétaux,et al.  Lake studies from satellite radar altimetry , 2006 .

[2]  Jeffrey B. Basara,et al.  Estimating profile soil moisture and groundwater variations using GRACE and Oklahoma Mesonet soil moisture data , 2008 .

[3]  Yves Meyer,et al.  Progress in wavelet analysis and applications , 1993 .

[4]  José Darrozes,et al.  Development and Evolution of the Size of Polygonal Fracture Systems during Fluid-Solid Separation in Clay-Rich Deposits , 2018, Journal of Earth Science.

[5]  Shahar Baram,et al.  Water percolation through a clayey vadose zone , 2012 .

[6]  Frédéric Frappart,et al.  Regional GRACE-based estimates of water mass variations over Australia: validation and interpretation , 2013 .

[7]  Kai Uwe Totsche,et al.  Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods , 2011 .

[8]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[9]  F. Frappart,et al.  Constrained Regional Recovery of Continental Water Mass Time-variations from GRACE-based Geopotential Anomalies over South America , 2010, Surveys in Geophysics.

[10]  David J. Williams,et al.  Cracking in drying soils , 1992 .

[11]  Michael T. Coe,et al.  Calculation of river discharge and prediction of lake height from satellite radar altimetry: Example for the Lake Chad basin , 2004 .

[12]  O. Adedeji,et al.  Physical, mineralogical and chemical properties of harmattan dust at Ile-Ife, Nigeria , 1989 .

[13]  Grzegorz Michalak,et al.  GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005 : revised edition, January 2013 , 2013 .

[14]  Li Min Zhang,et al.  Study of desiccation crack initiation and development at ground surface , 2011 .

[15]  Christopher B. Jones,et al.  Application of Meteosat thermal data to map soil infiltrability in the central part of the Lake Chad basin, Africa. , 2003 .

[16]  N. Agama,et al.  Dew formation and water vapor adsorption in semi-arid environments — A review , 2006 .

[17]  Gilbert Maglione,et al.  Géochimie des évaporites et silicates néoformés en milieu continental confiné : les dépressions interdunaires du Tchad - Afrique , 1976 .

[18]  Serge Janicot,et al.  Study of the first guinean rainy season and role of the subtropical jet of the northern hemisphere , 2003 .

[19]  W. Edmunds,et al.  Lakes, groundwater and palaeohydrology in the Sahel of NE Nigeria: evidence from hydrogeochemistry , 1999, Journal of the Geological Society.

[20]  Duane E. Waliser,et al.  GRACE's spatial aliasing error , 2006 .

[21]  Uri Nachshon,et al.  Falling through the cracks: The role of fractures in Earth‐atmosphere gas exchange , 2009 .

[22]  J. F. Aranyossy,et al.  Étude et modélisation de la formation des dépressions piézométriques en Afrique sahelienne , 1993 .

[23]  A. Matthews,et al.  Intraseasonal variability over tropical Africa during northern summer , 2004 .

[24]  Michel Brunet,et al.  Chad Basin: Paleoenvironments of the Sahara since the Late Miocene , 2009 .

[25]  Nurit Agam,et al.  Diurnal Water Content Changes in the Bare Soil of a Coastal Desert , 2004 .

[26]  Maria Ines Dragila,et al.  Potential impact of convective fracture venting on salt-crust buildup and ground-water salinization in arid environments , 2006 .

[27]  B. Ligouis,et al.  Thermal maturity and hydrocarbon potential of the Cretaceous (Cenomanian-Santonian) sediments in the Bornu (Chad) Basin, NE Nigeria , 1999 .

[28]  Thomas F. Kent,et al.  Image analysis and fractal geometry to characterize soil desiccation cracks , 2009 .

[29]  T. N. Krishnamurti,et al.  The status of the tropical rainfall measuring mission (TRMM) after two years in orbit , 2000 .

[30]  Aslak Grinsted,et al.  Nonlinear Processes in Geophysics Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series , 2022 .

[31]  J. Baltrusaitis,et al.  Water adsorption on clay minerals as a function of relative humidity: application of BET and Freundlich adsorption models. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[32]  Jacques Lemoalle,et al.  Modèle hydrologique du Lac Tchad , 2011 .

[33]  D. Lawrence,et al.  Regions of Strong Coupling Between Soil Moisture and Precipitation , 2004, Science.

[34]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[35]  D. Griffin,et al.  The late Neogene Sahabi rivers of the Sahara and their climatic and environmental implications for the Chad Basin , 2006, Journal of the Geological Society.

[36]  A. Fakher,et al.  Physical modeling of desiccation cracking in plastic soils , 2008 .

[37]  Yun-Hwei Shen,et al.  Determination of the surface area of smectite in water by ethylene oxide chain adsorption. , 2005, Journal of colloid and interface science.

[38]  R. Weinberger,et al.  Initiation and growth of cracks during desiccation of stratified muddy sediments , 1999 .

[39]  S. Gratton,et al.  GRACE-derived surface water mass anomalies by energy integral approach: application to continental hydrology , 2011 .

[40]  Michel-Alain Roche,et al.  Traçage naturel salin et isotopique des eaux du système hydrologique du lac Tchad , 1980 .

[41]  J. Monteith Evaporation and environment. , 1965, Symposia of the Society for Experimental Biology.

[42]  A. Fakher,et al.  Desiccation-induced cracking and its effect on the hydraulic conductivity of clayey soils from Iran , 2007 .

[43]  Uri Nachshon,et al.  The Importance of Advective Fluxes to Gas Transport Across the Earth-Atmosphere Interface: The Role of Thermal Convection , 2011 .

[44]  Bin Shi,et al.  Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils , 2010 .

[45]  Christian Leduc,et al.  Evolution des ressources en eau dans le departement de Diffa (bassin du lac Tchad, sud­ est nigerien) , 1998 .

[46]  Andreas Prokoph,et al.  Cross-Wavelet Analysis: a Tool for Detection of Relationships between Paleoclimate Proxy Records , 2008 .

[47]  Philippe Gaillot,et al.  Wavelet transform: a future of rock fabric analysis? , 1999 .

[48]  Scott B. Luthcke,et al.  FAST TRACK PAPER: Tide model errors and GRACE gravimetry: towards a more realistic assessment , 2006 .

[49]  Niall P. Hanan,et al.  AMMA-CATCH studies in the Sahelian region of West-Africa: an overview , 2009 .

[50]  J. Morlet,et al.  Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media , 1982 .

[51]  Maosheng Zhao,et al.  Improvements to a MODIS global terrestrial evapotranspiration algorithm , 2011 .

[52]  Alain Durand,et al.  Evolution p aléog éogr ap hique et paléoclimatique du bassin tchadien au Pléistocène supérieur , 1980 .

[53]  Sharon E. Nicholson,et al.  Validation of TRMM and Other Rainfall Estimates with a High-Density Gauge Dataset for West Africa. Part II: Validation of TRMM Rainfall Products , 2003 .

[54]  S. Janicot,et al.  The West African Monsoon Dynamics. Part II: The “Preonset” and “Onset” of the Summer Monsoon , 2003 .

[55]  Frédéric Frappart,et al.  Validation of GRACE-derived terrestrial water storage from a regional approach over South America , 2013 .

[56]  Kai-Uwe Goss,et al.  Effects of temperature and relative humidity on the sorption of organic vapors on quartz sand , 1992 .

[57]  G. J. Genik Regional framework, structural and petroleum aspects of rift basins in Niger, Chad and the Central African Republic (C.A.R.) , 1992 .

[58]  Srinivas Bettadpur,et al.  High‐resolution CSR GRACE RL05 mascons , 2016 .

[59]  Xavier Collilieux,et al.  Hydrological deformation induced by the West African Monsoon: Comparison of GPS, GRACE and loading models , 2012 .

[60]  Frédéric Frappart,et al.  Application of the Regional Water Mass Variations from GRACE Satellite Gravimetry to Large-Scale Water Management in Africa , 2014, Remote. Sens..

[61]  S. Janicot,et al.  Abrupt shift of the ITCZ over West Africa and intra‐seasonal variability , 2000 .

[62]  C. Shum,et al.  Time‐variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field , 2004 .

[63]  Guillaume Favreau,et al.  Evaluating surface and subsurface water storage variations at small time and space scales from relative gravity measurements in semiarid Niger , 2013 .

[64]  Yufeng Ge,et al.  Antecedent soil moisture affecting surface cracking of a Vertisol in field conditions , 2010 .

[65]  Semyon A. Grodsky,et al.  Coupled land/atmosphere interactions in the West African Monsoon , 2001 .

[66]  G. Ramillien,et al.  Subsurface Hydrology of the Lake Chad Basin from Convection Modelling and Observations , 2016, Surveys in Geophysics.

[67]  Catherine Ottlé,et al.  Land water storage variability over West Africa estimated by Gravity Recovery and Climate Experiment (GRACE) and land surface models , 2011 .

[68]  David T. Bolvin,et al.  Tropical Rainfall Distributions Determined Using TRMM Combined with Other Satellite and Rain Gauge Information , 2000 .

[69]  François Delclaux,et al.  Reconstruction of Megalake Chad using Shuttle Radar Topographic Mission data , 2006 .

[70]  Michel Brunet,et al.  Holocene Lake Mega-Chad palaeoshorelines from space , 2005 .

[71]  F. Zagrouba,et al.  Water diffusion coefficient in clay material from drying data , 2005 .

[72]  Bin Shi,et al.  Experimental characterization of shrinkage and desiccation cracking in thin clay layer , 2011 .

[73]  Haruyasu Nagai,et al.  Development of a Land Surface Model Including Evaporation and Adsorption Processes in the Soil for the Land–Air Exchange in Arid Regions , 2007 .

[74]  Arona Diedhiou,et al.  The West African monsoon dynamics. Part I: Documentation of intraseasonal variability , 2003 .

[75]  Dominique Tapsoba,et al.  Rainfall Variability in West Africa during the Years 1950-90 , 2002 .

[76]  Pierre Genthon,et al.  Investigation of groundwater resources in the Komadugu Yobe Valley (Lake Chad Basin, Niger) using MRS and TDEM methods , 2013 .

[77]  Olga Didova,et al.  Comparisons of atmospheric mass variations derived from ECMWF reanalysis and operational fields, over 2003–2011 , 2014, Journal of Geodesy.

[78]  Srinivas Bettadpur,et al.  Impact of short period, non‐tidal, temporal mass variability on GRACE gravity estimates , 2004 .

[79]  A. Grossmann,et al.  Cycle-octave and related transforms in seismic signal analysis , 1984 .

[80]  Don P. Chambers,et al.  Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean , 2012 .

[81]  Bernard Fontaine,et al.  Fluctuations in annual cycles and inter-seasonal memory in West Africa: rainfall, soil moisture and heat fluxes , 2007 .