Muskingum Models’ Development and their Parameter Estimation: A State-of-the-art Review
暂无分享,去创建一个
[1] J. Bazargan,et al. Calculation of Water Depth during Flood in Rivers using Linear Muskingum Method and Particle Swarm Optimization (PSO) Algorithm , 2022, Water Resources Management.
[2] R. Szymkiewicz,et al. Inverse Flood Routing Using Simplified Flow Equations , 2022, Water Resources Management.
[3] Songbai Song,et al. Comparison of Frequency Calculation Methods for Precipitation Series Containing Zero Values , 2022, Water Resources Management.
[4] Reyhaneh Akbari,et al. A new method for dividing flood period in the variable-parameter Muskingum models , 2021, Hydrology Research.
[5] E. Lee. Development of a New 8-Parameter Muskingum Flood Routing Model with Modified Inflows , 2021, Water.
[6] H. Loáiciga,et al. Developing a novel parameter-free optimization framework for flood routing , 2021, Scientific Reports.
[7] Mike Spiliotis,et al. Estimation of Fuzzy Parameters in the Linear Muskingum Model with the Aid of Particle Swarm Optimization , 2021, Sustainability.
[8] Litang Hu,et al. Enhancing the understanding of hydrological responses induced by ecological water replenishment using improved machine learning models: A case study in Yongding River. , 2021, The Science of the total environment.
[9] Chengpeng Lu,et al. Estimation of the Interaction Between Groundwater and Surface Water Based on Flow Routing Using an Improved Nonlinear Muskingum-Cunge Method , 2021, Water Resources Management.
[10] Jalal Bazargan,et al. Effects of uncertainty in determining the parameters of the linear Muskingum method using the particle swarm optimization (PSO) algorithm , 2021, Journal of Water and Climate Change.
[11] Gonglin Yuan,et al. The modified PRP conjugate gradient algorithm under a non-descent line search and its application in the Muskingum model and image restoration problems , 2021, Soft Computing.
[12] Lei Xu,et al. Yin-Yang firefly algorithm based on dimensionally Cauchy mutation , 2020, Expert Syst. Appl..
[13] S. Shojaee,et al. Flood Routing: Improving Outflow Using a New Non-linear Muskingum Model with Four Variable Parameters Coupled with PSO-GA Algorithm , 2020, Water Resources Management.
[14] Umut Okkan,et al. Locally tuned hybridized particle swarm optimization for the calibration of the nonlinear Muskingum flood routing model , 2020 .
[15] R. Szymkiewicz,et al. Identification of Parameters Influencing the Accuracy of the Solution of the Nonlinear Muskingum Equation , 2020, Water Resources Management.
[16] Paulin Coulibaly,et al. Identification of hydrological models for operational flood forecasting in St. John’s, Newfoundland, Canada , 2020 .
[17] Saeed Farzin,et al. A New Method for Flood Routing Utilizing Four-Parameter Nonlinear Muskingum and Shark Algorithm , 2019, Water Resources Management.
[18] Baosen Zhang,et al. A Modified Muskingum Flow Routing Model for Flood Wave Propagation during River Ice Thawing-Breakup Period , 2019, Water Resources Management.
[19] H. Loáiciga,et al. Generalized Storage Equations for Flood Routing with Nonlinear Muskingum Models , 2019, Water Resources Management.
[20] J. Fenton. Flood routing methods , 2019, Journal of Hydrology.
[21] Mohammed Falah Allawi,et al. Flood Routing in River Reaches Using a Three-Parameter Muskingum Model Coupled with an Improved Bat Algorithm , 2018, Water.
[22] Zaher Mundher Yaseen,et al. Improving the Muskingum Flood Routing Method Using a Hybrid of Particle Swarm Optimization and Bat Algorithm , 2018, Water.
[23] Majid Niazkar,et al. Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method , 2017 .
[24] L. Kang,et al. Parameter Estimation of Two Improved Nonlinear Muskingum Models Considering the Lateral Flow Using a Hybrid Algorithm , 2017, Water Resources Management.
[25] Ling Kang,et al. A new modified nonlinear Muskingum model and its parameter estimation using the adaptive genetic algorithm , 2017 .
[26] E. Todini,et al. On mass and momentum conservation in the variable-parameter Muskingum method , 2016 .
[27] Majid Niazkar,et al. Application of New Hybrid Optimization Technique for Parameter Estimation of New Improved Version of Muskingum Model , 2016, Water Resources Management.
[28] Xiaohui Yuan,et al. Parameter Identification of Nonlinear Muskingum Model with Backtracking Search Algorithm , 2016, Water Resources Management.
[29] Song Zhang,et al. Application of the Elitist-Mutated PSO and an Improved GSA to Estimate Parameters of Linear and Nonlinear Muskingum Flood Routing Models , 2016, PloS one.
[30] Omid Bozorg Haddad,et al. Application of a Hybrid Optimization Method in Muskingum Parameter Estimation , 2015 .
[31] B. Sahoo,et al. Variable parameter McCarthy–Muskingum flow transport model for compound channels accounting for distributed non-uniform lateral flow , 2015 .
[32] Said M. Easa,et al. Versatile Muskingum flood model with four variable parameters , 2015 .
[33] Zong Woo Geem,et al. A new nonlinear Muskingum flood routing model incorporating lateral flow , 2015 .
[34] Hugo A. Loáiciga,et al. A Re-Parameterized and Improved Nonlinear Muskingum Model for Flood Routing , 2015, Water Resources Management.
[35] M. Niazkar,et al. Assessment of Modified Honey Bee Mating Optimization for Parameter Estimation of Nonlinear Muskingum Models , 2015 .
[36] B. Yadav,et al. Variable parameter McCarthy–Muskingum routing method considering lateral flow , 2015 .
[37] Aijia Ouyang,et al. A Novel Parameter Estimation Method for Muskingum Model Using New Newton-Type Trust Region Algorithm , 2014 .
[38] Tung Khac Truong,et al. Hybrid particle swarm optimization for parameter estimation of Muskingum model , 2014, Neural Computing and Applications.
[39] Reza Barati,et al. Discussion: New and improved four-parameter non-linear Muskingum model , 2014 .
[40] Said M. Easa,et al. Closure to “Improved Nonlinear Muskingum Model with Variable Exponent Parameter” by Said M. Easa , 2014 .
[41] H. Karahan. Discussion of "Improved Nonlinear Muskingum Model with Variable Exponent Parameter" , 2014 .
[42] A. Vatankhah. Discussion of “Improved Nonlinear Muskingum Model with Variable Exponent Parameter” by Said M. Easa , 2014 .
[43] O. B. Haddad,et al. Discussion of “Improved Nonlinear Muskingum Model with Variable Exponent Parameter” by Said M. Easa , 2014 .
[44] O. B. Haddad,et al. Discussion of “Application of excel solver for parameter estimation of the nonlinear Muskingum models” by Reza Barati , 2014, KSCE Journal of Civil Engineering.
[45] S. Easa. New and improved four-parameter non-linear Muskingum model , 2014 .
[46] Elahe Fallah-Mehdipour,et al. Discussion of “Parameter Estimation of the Nonlinear Muskingum Flood-Routing Model Using a Hybrid Harmony Search Algorithm” by Halil Karahan, Gurhan Gurarslan, and Zong Woo Geem , 2014 .
[47] Reza Barati,et al. Discussion of “Parameter Estimation of the Nonlinear Muskingum Flood-Routing Model Using a Hybrid Harmony Search Algorithm” by Halil Karahan, Gurhan Gurarslan, and Zong Woo Geem , 2014 .
[48] S. Easa. Improved Nonlinear Muskingum Model with Variable Exponent Parameter , 2013 .
[49] M. Perumal,et al. A fully mass conservative variable parameter McCarthy-Muskingum method: Theory and verification , 2013 .
[50] Reza Barati,et al. Application of excel solver for parameter estimation of the nonlinear Muskingum models , 2013 .
[51] R. Barati. Application of excel solver for parameter estimation of the nonlinear Muskingum models , 2013, KSCE Journal of Civil Engineering.
[52] M. Mariño,et al. Estimation of Muskingum parameter by meta-heuristic algorithms , 2013 .
[53] Z. Geem,et al. Parameter Estimation of the Nonlinear Muskingum Flood-Routing Model Using a Hybrid Harmony Search Algorithm , 2013 .
[54] B. Sahoo,et al. Comparison of Variable Parameter Muskingum-Cunge and Variable Parameter McCarthy-Muskingum Routing Methods , 2012 .
[55] Lin Qiu,et al. Estimation of Nonlinear Muskingum Model Parameter Using Differential Evolution , 2012 .
[56] Reza Barati,et al. Parameter Estimation of Nonlinear Muskingum Models Using Nelder-Mead Simplex Algorithm , 2011 .
[57] Ali Haydar Kayhan,et al. PSOLVER: A new hybrid particle swarm optimization algorithm for solving continuous optimization problems , 2010, Expert Syst. Appl..
[58] Jiancang Xie,et al. Parameter Estimation for Nonlinear Muskingum Model Based on Immune Clonal Selection Algorithm , 2010 .
[59] Ali Haydar Kayhan,et al. Hybridizing the harmony search algorithm with a spreadsheet ‘Solver’ for solving continuous engineering optimization problems , 2009 .
[60] Z. Fuat Toprak,et al. Flow Discharge Modeling in Open Canals Using a New Fuzzy Modeling Technique (SMRGT) , 2009 .
[61] Liang-Cheng Chang,et al. Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model , 2009 .
[62] Lin Qiu,et al. Hybrid Chaotic Genetic Algorithms for Optimal Parameter Estimation of Muskingum Flood Routing Model , 2009, 2009 International Joint Conference on Computational Sciences and Optimization.
[63] Roland K. Price,et al. Volume-Conservative Nonlinear Flood Routing , 2009 .
[64] A. Koussis,et al. Assessment and review of the hydraulics of storage flood routing 70 years after the presentation of the Muskingum method , 2009 .
[65] Ezio Todini,et al. A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach , 2007 .
[66] Amlan Das,et al. Chance-Constrained Optimization-Based Parameter Estimation for Muskingum Models , 2007 .
[67] Muthiah Perumal,et al. Applicability criteria of the variable parameter Muskingum stage and discharge routing methods , 2007 .
[68] R. McCuen,et al. Evaluation of the Nash-Sutcliffe Efficiency Index , 2006 .
[69] Muthiah Perumal,et al. FIELD APPLICATIONS OF A VARIABLE-PARAMETER MUSKINGUM METHOD , 2001 .
[70] T. Sturm,et al. Open Channel Hydraulics , 2001 .
[71] D. A. Barry,et al. Accuracy criteria for linearised diffusion wave flood routing , 1997 .
[72] S. Mohan,et al. Parameter Estimation of Nonlinear Muskingum Models Using Genetic Algorithm , 1997 .
[73] Jaewan Yoon,et al. Parameter Estimation of Linear and Nonlinear Muskingum Models , 1993 .
[74] M. H. Khan,et al. Muskingum flood routing model for multiple tributaries , 1993 .
[75] Ross Woods,et al. Improved Fitting for Three‐Parameter Muskingum Procedure , 1988 .
[76] T. O'donnell. A direct three-parameter Muskingum procedure incorporating lateral inflow / Methode directe de Muskingum a trois parametres avec prise en compte des apports lateraux , 1985 .
[77] M. A. Gill. Flood routing by the Muskingum method , 1978 .
[78] Omid Bozorg Haddad,et al. Discussion of “Application of excel solver for parameter estimation of the nonlinear Muskingum models” by Reza Barati , 2015 .
[79] J. Salas,et al. Introduction to Hydrology , 2014 .
[80] E. Wilson. Engineering Hydrology , 1974 .