Muskingum Models’ Development and their Parameter Estimation: A State-of-the-art Review

[1]  J. Bazargan,et al.  Calculation of Water Depth during Flood in Rivers using Linear Muskingum Method and Particle Swarm Optimization (PSO) Algorithm , 2022, Water Resources Management.

[2]  R. Szymkiewicz,et al.  Inverse Flood Routing Using Simplified Flow Equations , 2022, Water Resources Management.

[3]  Songbai Song,et al.  Comparison of Frequency Calculation Methods for Precipitation Series Containing Zero Values , 2022, Water Resources Management.

[4]  Reyhaneh Akbari,et al.  A new method for dividing flood period in the variable-parameter Muskingum models , 2021, Hydrology Research.

[5]  E. Lee Development of a New 8-Parameter Muskingum Flood Routing Model with Modified Inflows , 2021, Water.

[6]  H. Loáiciga,et al.  Developing a novel parameter-free optimization framework for flood routing , 2021, Scientific Reports.

[7]  Mike Spiliotis,et al.  Estimation of Fuzzy Parameters in the Linear Muskingum Model with the Aid of Particle Swarm Optimization , 2021, Sustainability.

[8]  Litang Hu,et al.  Enhancing the understanding of hydrological responses induced by ecological water replenishment using improved machine learning models: A case study in Yongding River. , 2021, The Science of the total environment.

[9]  Chengpeng Lu,et al.  Estimation of the Interaction Between Groundwater and Surface Water Based on Flow Routing Using an Improved Nonlinear Muskingum-Cunge Method , 2021, Water Resources Management.

[10]  Jalal Bazargan,et al.  Effects of uncertainty in determining the parameters of the linear Muskingum method using the particle swarm optimization (PSO) algorithm , 2021, Journal of Water and Climate Change.

[11]  Gonglin Yuan,et al.  The modified PRP conjugate gradient algorithm under a non-descent line search and its application in the Muskingum model and image restoration problems , 2021, Soft Computing.

[12]  Lei Xu,et al.  Yin-Yang firefly algorithm based on dimensionally Cauchy mutation , 2020, Expert Syst. Appl..

[13]  S. Shojaee,et al.  Flood Routing: Improving Outflow Using a New Non-linear Muskingum Model with Four Variable Parameters Coupled with PSO-GA Algorithm , 2020, Water Resources Management.

[14]  Umut Okkan,et al.  Locally tuned hybridized particle swarm optimization for the calibration of the nonlinear Muskingum flood routing model , 2020 .

[15]  R. Szymkiewicz,et al.  Identification of Parameters Influencing the Accuracy of the Solution of the Nonlinear Muskingum Equation , 2020, Water Resources Management.

[16]  Paulin Coulibaly,et al.  Identification of hydrological models for operational flood forecasting in St. John’s, Newfoundland, Canada , 2020 .

[17]  Saeed Farzin,et al.  A New Method for Flood Routing Utilizing Four-Parameter Nonlinear Muskingum and Shark Algorithm , 2019, Water Resources Management.

[18]  Baosen Zhang,et al.  A Modified Muskingum Flow Routing Model for Flood Wave Propagation during River Ice Thawing-Breakup Period , 2019, Water Resources Management.

[19]  H. Loáiciga,et al.  Generalized Storage Equations for Flood Routing with Nonlinear Muskingum Models , 2019, Water Resources Management.

[20]  J. Fenton Flood routing methods , 2019, Journal of Hydrology.

[21]  Mohammed Falah Allawi,et al.  Flood Routing in River Reaches Using a Three-Parameter Muskingum Model Coupled with an Improved Bat Algorithm , 2018, Water.

[22]  Zaher Mundher Yaseen,et al.  Improving the Muskingum Flood Routing Method Using a Hybrid of Particle Swarm Optimization and Bat Algorithm , 2018, Water.

[23]  Majid Niazkar,et al.  Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method , 2017 .

[24]  L. Kang,et al.  Parameter Estimation of Two Improved Nonlinear Muskingum Models Considering the Lateral Flow Using a Hybrid Algorithm , 2017, Water Resources Management.

[25]  Ling Kang,et al.  A new modified nonlinear Muskingum model and its parameter estimation using the adaptive genetic algorithm , 2017 .

[26]  E. Todini,et al.  On mass and momentum conservation in the variable-parameter Muskingum method , 2016 .

[27]  Majid Niazkar,et al.  Application of New Hybrid Optimization Technique for Parameter Estimation of New Improved Version of Muskingum Model , 2016, Water Resources Management.

[28]  Xiaohui Yuan,et al.  Parameter Identification of Nonlinear Muskingum Model with Backtracking Search Algorithm , 2016, Water Resources Management.

[29]  Song Zhang,et al.  Application of the Elitist-Mutated PSO and an Improved GSA to Estimate Parameters of Linear and Nonlinear Muskingum Flood Routing Models , 2016, PloS one.

[30]  Omid Bozorg Haddad,et al.  Application of a Hybrid Optimization Method in Muskingum Parameter Estimation , 2015 .

[31]  B. Sahoo,et al.  Variable parameter McCarthy–Muskingum flow transport model for compound channels accounting for distributed non-uniform lateral flow , 2015 .

[32]  Said M. Easa,et al.  Versatile Muskingum flood model with four variable parameters , 2015 .

[33]  Zong Woo Geem,et al.  A new nonlinear Muskingum flood routing model incorporating lateral flow , 2015 .

[34]  Hugo A. Loáiciga,et al.  A Re-Parameterized and Improved Nonlinear Muskingum Model for Flood Routing , 2015, Water Resources Management.

[35]  M. Niazkar,et al.  Assessment of Modified Honey Bee Mating Optimization for Parameter Estimation of Nonlinear Muskingum Models , 2015 .

[36]  B. Yadav,et al.  Variable parameter McCarthy–Muskingum routing method considering lateral flow , 2015 .

[37]  Aijia Ouyang,et al.  A Novel Parameter Estimation Method for Muskingum Model Using New Newton-Type Trust Region Algorithm , 2014 .

[38]  Tung Khac Truong,et al.  Hybrid particle swarm optimization for parameter estimation of Muskingum model , 2014, Neural Computing and Applications.

[39]  Reza Barati,et al.  Discussion: New and improved four-parameter non-linear Muskingum model , 2014 .

[40]  Said M. Easa,et al.  Closure to “Improved Nonlinear Muskingum Model with Variable Exponent Parameter” by Said M. Easa , 2014 .

[41]  H. Karahan Discussion of "Improved Nonlinear Muskingum Model with Variable Exponent Parameter" , 2014 .

[42]  A. Vatankhah Discussion of “Improved Nonlinear Muskingum Model with Variable Exponent Parameter” by Said M. Easa , 2014 .

[43]  O. B. Haddad,et al.  Discussion of “Improved Nonlinear Muskingum Model with Variable Exponent Parameter” by Said M. Easa , 2014 .

[44]  O. B. Haddad,et al.  Discussion of “Application of excel solver for parameter estimation of the nonlinear Muskingum models” by Reza Barati , 2014, KSCE Journal of Civil Engineering.

[45]  S. Easa New and improved four-parameter non-linear Muskingum model , 2014 .

[46]  Elahe Fallah-Mehdipour,et al.  Discussion of “Parameter Estimation of the Nonlinear Muskingum Flood-Routing Model Using a Hybrid Harmony Search Algorithm” by Halil Karahan, Gurhan Gurarslan, and Zong Woo Geem , 2014 .

[47]  Reza Barati,et al.  Discussion of “Parameter Estimation of the Nonlinear Muskingum Flood-Routing Model Using a Hybrid Harmony Search Algorithm” by Halil Karahan, Gurhan Gurarslan, and Zong Woo Geem , 2014 .

[48]  S. Easa Improved Nonlinear Muskingum Model with Variable Exponent Parameter , 2013 .

[49]  M. Perumal,et al.  A fully mass conservative variable parameter McCarthy-Muskingum method: Theory and verification , 2013 .

[50]  Reza Barati,et al.  Application of excel solver for parameter estimation of the nonlinear Muskingum models , 2013 .

[51]  R. Barati Application of excel solver for parameter estimation of the nonlinear Muskingum models , 2013, KSCE Journal of Civil Engineering.

[52]  M. Mariño,et al.  Estimation of Muskingum parameter by meta-heuristic algorithms , 2013 .

[53]  Z. Geem,et al.  Parameter Estimation of the Nonlinear Muskingum Flood-Routing Model Using a Hybrid Harmony Search Algorithm , 2013 .

[54]  B. Sahoo,et al.  Comparison of Variable Parameter Muskingum-Cunge and Variable Parameter McCarthy-Muskingum Routing Methods , 2012 .

[55]  Lin Qiu,et al.  Estimation of Nonlinear Muskingum Model Parameter Using Differential Evolution , 2012 .

[56]  Reza Barati,et al.  Parameter Estimation of Nonlinear Muskingum Models Using Nelder-Mead Simplex Algorithm , 2011 .

[57]  Ali Haydar Kayhan,et al.  PSOLVER: A new hybrid particle swarm optimization algorithm for solving continuous optimization problems , 2010, Expert Syst. Appl..

[58]  Jiancang Xie,et al.  Parameter Estimation for Nonlinear Muskingum Model Based on Immune Clonal Selection Algorithm , 2010 .

[59]  Ali Haydar Kayhan,et al.  Hybridizing the harmony search algorithm with a spreadsheet ‘Solver’ for solving continuous engineering optimization problems , 2009 .

[60]  Z. Fuat Toprak,et al.  Flow Discharge Modeling in Open Canals Using a New Fuzzy Modeling Technique (SMRGT) , 2009 .

[61]  Liang-Cheng Chang,et al.  Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model , 2009 .

[62]  Lin Qiu,et al.  Hybrid Chaotic Genetic Algorithms for Optimal Parameter Estimation of Muskingum Flood Routing Model , 2009, 2009 International Joint Conference on Computational Sciences and Optimization.

[63]  Roland K. Price,et al.  Volume-Conservative Nonlinear Flood Routing , 2009 .

[64]  A. Koussis,et al.  Assessment and review of the hydraulics of storage flood routing 70 years after the presentation of the Muskingum method , 2009 .

[65]  Ezio Todini,et al.  A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach , 2007 .

[66]  Amlan Das,et al.  Chance-Constrained Optimization-Based Parameter Estimation for Muskingum Models , 2007 .

[67]  Muthiah Perumal,et al.  Applicability criteria of the variable parameter Muskingum stage and discharge routing methods , 2007 .

[68]  R. McCuen,et al.  Evaluation of the Nash-Sutcliffe Efficiency Index , 2006 .

[69]  Muthiah Perumal,et al.  FIELD APPLICATIONS OF A VARIABLE-PARAMETER MUSKINGUM METHOD , 2001 .

[70]  T. Sturm,et al.  Open Channel Hydraulics , 2001 .

[71]  D. A. Barry,et al.  Accuracy criteria for linearised diffusion wave flood routing , 1997 .

[72]  S. Mohan,et al.  Parameter Estimation of Nonlinear Muskingum Models Using Genetic Algorithm , 1997 .

[73]  Jaewan Yoon,et al.  Parameter Estimation of Linear and Nonlinear Muskingum Models , 1993 .

[74]  M. H. Khan,et al.  Muskingum flood routing model for multiple tributaries , 1993 .

[75]  Ross Woods,et al.  Improved Fitting for Three‐Parameter Muskingum Procedure , 1988 .

[76]  T. O'donnell A direct three-parameter Muskingum procedure incorporating lateral inflow / Methode directe de Muskingum a trois parametres avec prise en compte des apports lateraux , 1985 .

[77]  M. A. Gill Flood routing by the Muskingum method , 1978 .

[78]  Omid Bozorg Haddad,et al.  Discussion of “Application of excel solver for parameter estimation of the nonlinear Muskingum models” by Reza Barati , 2015 .

[79]  J. Salas,et al.  Introduction to Hydrology , 2014 .

[80]  E. Wilson Engineering Hydrology , 1974 .