Continued Fractions and the Transfer Operator Approach

The transfer operator approach is a concept first introduced by David Ruelle, a Belgian-French mathematical physicist, who worked on statistical physics and dynamical systems. He introduced the transfer operator a means to study dynamical zeta functions. A good introduction to chaotic systems, motivating and introducing dynamical zeta functions (in a general setting) is the web book. Our goal in this chapter is more specific. We focus solely on variants of the Artin billiard and the Mayer’s transfer operator approach. Surprisingly, the period functions, as defined in § 5.1 of the previous chapter, play a significant role in Mayer’s transfer operator theory.

[1]  D. Hejhal The Selberg trace formula for PSL (2, IR) , 1983 .

[2]  D. Mayer,et al.  On the thermodynamic formalism for the gauss map , 1990 .

[3]  E. Artin Ein mechanisches system mit quasiergodischen bahnen , 1924 .

[4]  A. Venkov Spectral Theory of Automorphic Functions: and Its Applications , 1990 .

[5]  Roelof Bruggeman,et al.  Perturbation of Zeros of the Selberg Zeta Function for Γ0(4) , 2013, Exp. Math..

[6]  D. Mayer,et al.  The transfer operator for the Hecke triangle groups , 2009, 0912.2236.

[7]  A. Pohl Odd and even Maass cusp forms for Hecke triangle groups, and the billiard flow , 2013, Ergodic Theory and Dynamical Systems.

[8]  Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology: Selberg's Trace Formula: An Introduction , 2004, math/0407288.

[9]  A. Grothendieck,et al.  Produits Tensoriels Topologiques Et Espaces Nucleaires , 1966 .

[10]  C. Series The modular surface and continued fractions , 1985 .

[11]  A. Pohl A dynamical approach to Maass cusp forms , 2012, 1208.6178.

[12]  D. Mayer,et al.  The thermodynamic formalism approach to Selberg's zeta function for ${\text{PSL}}\left( {2,\mathbf{Z}} \right)$ , 1991 .

[13]  Fredrik Strömberg Computation of Selberg zeta functions on Hecke triangle groups , 2008 .

[14]  D. Mayer,et al.  Symmetries of the transfer operator for $\Gamma_0(N)$ and a character deformation of the Selberg zeta function for $\Gamma_0(4)$ , 2010, 1011.4441.

[15]  D. Zagier,et al.  Period Functions for Maass Wave Forms and Cohomology , 2015 .

[16]  Function Theory Related to the Group PSL2(ℝ) , 2013 .

[17]  D. Ruelle Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval , 1994 .

[18]  R. Bruggeman,et al.  Eigenfunctions of transfer operators and cohomology , 2009 .

[19]  Period functions for Maass wave forms. I. , 2001, math/0101270.

[20]  D. Ruelle Zeta-functions for expanding maps and Anosov flows , 1976 .

[21]  D. Hejhal The selberg trace formula and the riemann zeta function , 1976 .

[22]  Martin Möller,et al.  Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant , 2011, Ergodic Theory and Dynamical Systems.