Continued Fractions and the Transfer Operator Approach
暂无分享,去创建一个
[1] D. Hejhal. The Selberg trace formula for PSL (2, IR) , 1983 .
[2] D. Mayer,et al. On the thermodynamic formalism for the gauss map , 1990 .
[3] E. Artin. Ein mechanisches system mit quasiergodischen bahnen , 1924 .
[4] A. Venkov. Spectral Theory of Automorphic Functions: and Its Applications , 1990 .
[5] Roelof Bruggeman,et al. Perturbation of Zeros of the Selberg Zeta Function for Γ0(4) , 2013, Exp. Math..
[6] D. Mayer,et al. The transfer operator for the Hecke triangle groups , 2009, 0912.2236.
[7] A. Pohl. Odd and even Maass cusp forms for Hecke triangle groups, and the billiard flow , 2013, Ergodic Theory and Dynamical Systems.
[8] Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology: Selberg's Trace Formula: An Introduction , 2004, math/0407288.
[9] A. Grothendieck,et al. Produits Tensoriels Topologiques Et Espaces Nucleaires , 1966 .
[10] C. Series. The modular surface and continued fractions , 1985 .
[11] A. Pohl. A dynamical approach to Maass cusp forms , 2012, 1208.6178.
[12] D. Mayer,et al. The thermodynamic formalism approach to Selberg's zeta function for ${\text{PSL}}\left( {2,\mathbf{Z}} \right)$ , 1991 .
[13] Fredrik Strömberg. Computation of Selberg zeta functions on Hecke triangle groups , 2008 .
[14] D. Mayer,et al. Symmetries of the transfer operator for $\Gamma_0(N)$ and a character deformation of the Selberg zeta function for $\Gamma_0(4)$ , 2010, 1011.4441.
[15] D. Zagier,et al. Period Functions for Maass Wave Forms and Cohomology , 2015 .
[16] Function Theory Related to the Group PSL2(ℝ) , 2013 .
[17] D. Ruelle. Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval , 1994 .
[18] R. Bruggeman,et al. Eigenfunctions of transfer operators and cohomology , 2009 .
[19] Period functions for Maass wave forms. I. , 2001, math/0101270.
[20] D. Ruelle. Zeta-functions for expanding maps and Anosov flows , 1976 .
[21] D. Hejhal. The selberg trace formula and the riemann zeta function , 1976 .
[22] Martin Möller,et al. Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant , 2011, Ergodic Theory and Dynamical Systems.