Algebraically contractible topological tensor network states

We adapt the bialgebra and Hopf relations to expose internal structure in the ground state of a Hamiltonian with $Z_2$ topological order. Its tensor network description allows for exact contraction through simple diagrammatic rewrite rules. The contraction property does not depend on specifics such as geometry, but rather originates from the non-trivial algebraic properties of the constituent tensors. We then generalise the resulting tensor network from a spin-1/2 lattice to a class of exactly contractible states on spin-S degrees of freedom, yielding the most efficient tensor network description of finite Abelian lattice gauge theories. We gain a new perspective on these states as examples of two-dimensional quantum states with algebraically contractible tensor network representations. The introduction of local perturbations to the network is shown to reduce the von Neumann entropy of string-like regions, creating an unentangled sub-system within the bulk in a certain limit. We also show how perturbations induce finite-range correlations in this system. This class of tensor networks is readily translated onto any lattice, and we differentiate between the physical consequences of bipartite and non-bipartite lattices on the properties of the corresponding quantum states. We explicitly show this on the hexagonal, square, kagome and triangular lattices.

[1]  John Preskill,et al.  Topological entanglement entropy. , 2005, Physical Review Letters.

[2]  F. Verstraete,et al.  Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.

[3]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[4]  Bipartite entanglement and entropic boundary law in lattice spin systems (10 pages) , 2004, quant-ph/0409073.

[5]  Jacob D. Biamonte,et al.  Categorical Tensor Network States , 2010, ArXiv.

[6]  Guifre Vidal,et al.  Entanglement Renormalization: An Introduction , 2009, 0912.1651.

[7]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[8]  P. Anderson The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.

[9]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[10]  Z. Y. Xie,et al.  Renormalization of tensor-network states , 2010, 1002.1405.

[11]  Yves Lafont,et al.  Towards an algebraic theory of Boolean circuits , 2003 .

[12]  Naoto Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[13]  Bela Bauer,et al.  Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states , 2009, 0912.0646.

[14]  Jean-Pierre Serre,et al.  Linear representations of finite groups , 1977, Graduate texts in mathematics.

[15]  Bei Zeng,et al.  Tensor product representation of a topological ordered phase: Necessary symmetry conditions , 2010, 1003.1774.

[16]  Yasuhiro Hieida,et al.  Two-Dimensional Tensor Product Variational Formulation , 2001 .

[17]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[18]  Yves Lafont Equational Reasoning with Two-Dimensional Diagrams , 1993, Term Rewriting.

[19]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[20]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[21]  C. Kane Condensed matter: An insulator with a twist , 2008 .

[22]  G. Vidal,et al.  Entanglement renormalization and topological order. , 2007, Physical review letters.

[23]  Joachim Kock,et al.  Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .

[24]  Philip W. Anderson,et al.  The Resonating Valence Bond State in La 2 CuO 4 and Superconductivity , 1987 .

[25]  Claude Klöckl,et al.  The density matrix renormalization group on tensor networks , 2013 .

[26]  Macdonald,et al.  Off-diagonal long-range order, oblique confinement, and the fractional quantum Hall effect. , 1987, Physical review letters.

[27]  T. Nishino,et al.  DENSITY MATRIX RENORMALIZATION GROUP: INTRODUCTION FROM A VARIATIONAL POINT OF VIEW , 1999 .

[28]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[29]  Linearized tensor renormalization group algorithm for the calculation of thermodynamic properties of quantum lattice models. , 2010, Physical review letters.

[30]  M. Plenio,et al.  Density matrix renormalization group in the Heisenberg picture. , 2008, Physical review letters.

[31]  Xiao-Gang Wen,et al.  Tensor-product representations for string-net condensed states , 2008, 0809.2821.

[32]  V. Turaev Quantum invariants of knots and three manifolds , 1994 .

[33]  G. Vidal,et al.  Classical simulation of quantum many-body systems with a tree tensor network , 2005, quant-ph/0511070.

[34]  Roman Orus,et al.  Simulation of two-dimensional quantum systems on an infinite lattice revisited: Corner transfer matrix for tensor contraction , 2009, 0905.3225.

[35]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[36]  Michael Levin,et al.  Tensor renormalization group approach to two-dimensional classical lattice models. , 2006, Physical review letters.

[37]  Jens Eisert,et al.  Real-space renormalization yields finite correlations. , 2010, Physical review letters.

[38]  David N. Yetter,et al.  FROBENIUS ALGEBRAS AND 2D TOPOLOGICAL QUANTUM FIELD THEORIES (London Mathematical Society Student Texts 59) , 2004 .

[39]  J. Ignacio Cirac,et al.  Fermionic projected entangled pair states , 2009, 0904.4667.

[40]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[41]  M. Aguado,et al.  Explicit tensor network representation for the ground states of string-net models , 2008, 0809.2393.

[42]  Guifre Vidal,et al.  Entanglement renormalization and gauge symmetry , 2010, 1007.4145.

[43]  Y. Lafont Applications of Categories in Computer Science: Penrose diagrams and 2-dimensional rewriting , 1992 .

[44]  G. Vidal,et al.  Exact entanglement renormalization for string-net models , 2008, 0806.4583.

[45]  Xiao-Gang Wen,et al.  Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions , 2008 .

[46]  Philippe Corboz,et al.  Fermionic multiscale entanglement renormalization ansatz , 2009, 0907.3184.

[47]  Guifre Vidal,et al.  Simulation of interacting fermions with entanglement renormalization , 2009, Physical Review A.

[48]  Ville Bergholm,et al.  Categorical quantum circuits , 2010, 1010.4840.

[49]  D. Pérez-García,et al.  PEPS as ground states: Degeneracy and topology , 2010, 1001.3807.

[50]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.