Métaheuristiques : Stratégies pour l'optimisation de la production de biens et de services. (Metaheuristics: strategies for the optimisation of the production of goods and services)

Resoudre des problemes d'optimisation est un point cle dans l'amelioration constante de la productivite des entreprises. Quand les methodes traditionnelles echouent, il devient alors naturel de se tourner vers des techniques de resolution approchee. Les metaheuristiques jouent, aujourd'hui, un role primordial dans la resolution des problemes d'optimisation. Ces techniques sont devenues, en quelques annees, des outils incoutournables et performants. Dans cette synthese, nous presentons un panorama des metaheuristiques classiques (methodes de descente, recuit simule, recherche tabou, algorithmes genetiques), de certaines moins connues (recherche a voisinages variables, GRASP, iterated local search, guided local search, colonies de fourmis) et de techniques avancees (algorithmes memetiques, scatter search, GA|PM). Pour toutes ces methodes, nous analysons les facteurs d'intensification et de diversification presents, les particularites de chacune d'elle et notre retour d'experience sur les applications que nous avons traites. De cette analyse, nous pouvons proposer ce que sont, selon nous, les caracteristiques indispensables a une bonne metaheuristique.

[1]  Fred Glover,et al.  Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .

[2]  Jürgen Branke,et al.  Creating Robust Solutions by Means of Evolutionary Algorithms , 1998, PPSN.

[3]  Stéphane Dauzère-Pérès,et al.  Genetic algorithms to minimize the weighted number of late jobs on a single machine , 2003, Eur. J. Oper. Res..

[4]  S. Ronald Distance functions for order-based encodings , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[5]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[6]  Stéphane Dauzère-Pérès,et al.  Minimizing late jobs in the general one machine scheduling problem , 1995 .

[7]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[8]  Ángel Corberán,et al.  Heuristic solutions to the problem of routing school buses with multiple objectives , 2002, J. Oper. Res. Soc..

[9]  Shigeyoshi Tsutsui,et al.  A Robust Solution Searching Scheme in Genetic Search , 1996, PPSN.

[10]  Stefan Voß,et al.  Dynamic tabu list management using the reverse elimination method , 1993, Ann. Oper. Res..

[11]  Shigeyoshi Tsutsui,et al.  Genetic algorithms with a robust solution searching scheme , 1997, IEEE Trans. Evol. Comput..

[12]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[13]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[14]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[15]  Rafael Martí,et al.  Context-Independent Scatter and Tabu Search for Permutation Problems , 2005, INFORMS J. Comput..

[16]  Michael L. Mauldin,et al.  Maintaining Diversity in Genetic Search , 1984, AAAI.

[17]  S. Ronald,et al.  More distance functions for order-based encodings , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[18]  Philippe Baptiste,et al.  Global Constraints for Partial CSPs: A Case-Study of Resource and Due Date Constraints , 1998, CP.

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[21]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[22]  Jan Karel Lenstra,et al.  Complexity of machine scheduling problems , 1975 .

[23]  Chris N. Potts,et al.  An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem , 2002, INFORMS J. Comput..

[24]  Philippe Baptiste,et al.  A branch and bound to minimize the number of late jobs on a single machine with release time constraints , 2003, Eur. J. Oper. Res..

[25]  Rafael Martí,et al.  Intensification and diversification with elite tabu search solutions for the linear ordering problem , 1999, Comput. Oper. Res..

[26]  Kenneth Sörensen,et al.  Tabu Searching for Robust Solutions , 2001 .

[27]  Chris N. Potts,et al.  Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem , 1998, INFORMS J. Comput..

[28]  Philippe Lacomme,et al.  A Genetic Algorithm for the Capacitated Arc Routing Problem and Its Extensions , 2001, EvoWorkshops.

[29]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[30]  Yang-Byung Park,et al.  An interactive computerized algorithm for multicriteria vehicle routing problems , 1989 .

[31]  E. L. Lawler,et al.  Knapsack-like scheduling problems, the Moore-Hodgson algorithm and the 'tower of sets' property , 1994 .

[32]  Jacques A. Ferland,et al.  Scheduling using tabu search methods with intensification and diversification , 2001, Comput. Oper. Res..

[33]  E. Lawler A “Pseudopolynomial” Algorithm for Sequencing Jobs to Minimize Total Tardiness , 1977 .

[34]  Colin R. Reeves,et al.  Genetic Algorithms for the Operations Researcher , 1997, INFORMS J. Comput..

[35]  Stéphane Dauzère-Pérès,et al.  Using Lagrangean relaxation to minimize the weighted number of late jobs on a single machine , 2003 .

[36]  Philippe Baptiste,et al.  A Branch-and-Bound procedure to minimize total tardiness on one machine with arbitrary release dates , 2004, Eur. J. Oper. Res..

[37]  Bruce L. Golden,et al.  Capacitated arc routing problems , 1981, Networks.

[38]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[39]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[40]  Colin R. Reeves,et al.  Using Genetic Algorithms with Small Populations , 1993, ICGA.

[41]  José-Manuel Belenguer,et al.  A cutting plane algorithm for the capacitated arc routing problem , 2003, Comput. Oper. Res..

[42]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[43]  Toshihide Ibaraki,et al.  A Solvable Case of the One-Machine Scheduling Problem with Ready and Due Times , 1978, Oper. Res..

[44]  K. Sörensen,et al.  A framework for robust and flexible optimisation using metaheuristics with applications in supply chain design , 2003 .

[45]  Luc Muyldermans,et al.  A guided local search heuristic for the capacitated arc routing problem , 2003, Eur. J. Oper. Res..

[46]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[47]  Shigeyoshi Tsutsui,et al.  A comparative study on the effects of adding perturbations to phenotypic parameters in genetic algorithms with a robust solution searching scheme , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[48]  Alain Hertz,et al.  Guidelines for the use of meta-heuristics in combinatorial optimization , 2003, Eur. J. Oper. Res..

[49]  Lutgarde M. C. Buydens,et al.  The ineffectiveness of recombination in a genetic algorithm for the structure elucidation of a heptapeptide in torsion angle space. A comparison to simulated annealing , 1997 .

[50]  Gilbert Laporte,et al.  A Tabu Search Heuristic for the Capacitated Arc Routing Problem , 2000, Oper. Res..

[51]  Fred W. Glover,et al.  A Template for Scatter Search and Path Relinking , 1997, Artificial Evolution.

[52]  Peter Greistorfer,et al.  A Tabu Scatter Search Metaheuristic for the Arc Routing Problem , 2002 .

[53]  Robert L. Bulfin,et al.  Scheduling a Single Machine to Minimize the Weighted Number of Tardy Jobs , 1983 .

[54]  Karl Ernst Osthaus Van de Velde , 1920 .

[55]  J. Branke Reducing the sampling variance when searching for robust solutions , 2001 .

[56]  Willy Herroelen,et al.  Project scheduling under uncertainty: Survey and research potentials , 2005, Eur. J. Oper. Res..

[57]  Alain Hertz,et al.  A Variable Neighborhood Descent Algorithm for the Undirected Capacitated Arc Routing Problem , 2001, Transp. Sci..

[58]  J. M. Moore An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs , 1968 .

[59]  Esko Ukkonen,et al.  Finding Approximate Patterns in Strings , 1985, J. Algorithms.