Symbolic Computation of Equi-affine Evolute for Plane B-Spline Curves

In Euclidean plane geometry, the evolute of both B-spline and NURBS curves are NURBS curves. Moreover, this evolute can be computed symbolically. This article extends those results to the equi-affine plane geometry. Analogously to Euclidean geometry, the equi-affine evolute of both B-spline and NURBS curves are NURBS curves and an algorithm for the symbolic computation is given for B-spline curves. This results in a new method to analyze the global affine differential properties of B-spline curves and assess B-spline curve quality in an affine invariant context.

[1]  Ron Goldman,et al.  Pyramid algorithms - a dynamic programming approach to curves and surfaces for geometric modeling , 2002, Morgan Kaufmann series in computer graphics and geometric modeling.

[2]  Guillermo Sapiro,et al.  Affine-invariant symmetry sets , 1997 .

[3]  W. Blaschke,et al.  Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie: 1 Elementare Differentialgeometrie , 2022 .

[4]  Felix Klein Elementary Mathematics from an Advanced Standpoint: Geometry , 1941 .

[5]  E. Cartan,et al.  Lecons sur la théorie des espacea : a connexion projective , 1937 .

[6]  Xianming Chen,et al.  An Application of Singularity Theory to Robust Geometric Calculation of Interactions Among Dynamically Deforming Geometric Objects , 2008 .

[7]  E. Cartan,et al.  La théorie des groupes finis et continus et la Géométrie différentielle traitées par la méthode du repère mobile : leçons professées à la Sorbonne , 1937 .

[8]  Generic affine differential geometry of plane curves , 1998 .

[9]  P. Giblin,et al.  Curves and singularities : a geometrical introduction to singularity theory , 1992 .

[10]  Wilhelm Blaschke,et al.  Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie , 2022 .

[11]  Rida T. Farouki,et al.  Algorithm 812: BPOLY: An object-oriented library of numerical algorithms for polynomials in Bernstein form , 2001, TOMS.

[12]  Rida T. Farouki,et al.  The Bernstein polynomial basis: A centennial retrospective , 2012, Comput. Aided Geom. Des..

[13]  Rida T. Farouki,et al.  Pythagorean-Hodograph Curves , 2002, Handbook of Computer Aided Geometric Design.

[14]  Raphael L. Levien,et al.  From Spiral to Spline: Optimal Techniques in Interactive Curve Design , 2009 .

[15]  Robert Osserman The Four-or-More Vertex Theorem , 1985 .

[16]  Xianming Chen,et al.  Complexity Reduction for Symbolic Computation with Rational B-splines , 2007, Int. J. Shape Model..

[17]  Les A. Piegl,et al.  Symbolic operators for NURBS , 1997, Comput. Aided Des..

[18]  Gershon Elber,et al.  Comparing Offset Curve Approximation Methods , 1997, IEEE Computer Graphics and Applications.

[19]  Benjamin B. Kimia,et al.  On the Local Form and Transitions of Symmetry Sets, Medial Axes, and Shocks , 2004, International Journal of Computer Vision.

[20]  Ian R. Porteous,et al.  Geometric differentiation for the intelligence of curves and surfaces , 1994 .

[21]  J. Stillwell Mathematics and Its History , 2020, Undergraduate Texts in Mathematics.

[22]  T. Gowers Princeton companion to mathematics , 2008 .