Symbolic Computation of Equi-affine Evolute for Plane B-Spline Curves
暂无分享,去创建一个
[1] Ron Goldman,et al. Pyramid algorithms - a dynamic programming approach to curves and surfaces for geometric modeling , 2002, Morgan Kaufmann series in computer graphics and geometric modeling.
[2] Guillermo Sapiro,et al. Affine-invariant symmetry sets , 1997 .
[3] W. Blaschke,et al. Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie: 1 Elementare Differentialgeometrie , 2022 .
[4] Felix Klein. Elementary Mathematics from an Advanced Standpoint: Geometry , 1941 .
[5] E. Cartan,et al. Lecons sur la théorie des espacea : a connexion projective , 1937 .
[6] Xianming Chen,et al. An Application of Singularity Theory to Robust Geometric Calculation of Interactions Among Dynamically Deforming Geometric Objects , 2008 .
[7] E. Cartan,et al. La théorie des groupes finis et continus et la Géométrie différentielle traitées par la méthode du repère mobile : leçons professées à la Sorbonne , 1937 .
[8] Generic affine differential geometry of plane curves , 1998 .
[9] P. Giblin,et al. Curves and singularities : a geometrical introduction to singularity theory , 1992 .
[10] Wilhelm Blaschke,et al. Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie , 2022 .
[11] Rida T. Farouki,et al. Algorithm 812: BPOLY: An object-oriented library of numerical algorithms for polynomials in Bernstein form , 2001, TOMS.
[12] Rida T. Farouki,et al. The Bernstein polynomial basis: A centennial retrospective , 2012, Comput. Aided Geom. Des..
[13] Rida T. Farouki,et al. Pythagorean-Hodograph Curves , 2002, Handbook of Computer Aided Geometric Design.
[14] Raphael L. Levien,et al. From Spiral to Spline: Optimal Techniques in Interactive Curve Design , 2009 .
[15] Robert Osserman. The Four-or-More Vertex Theorem , 1985 .
[16] Xianming Chen,et al. Complexity Reduction for Symbolic Computation with Rational B-splines , 2007, Int. J. Shape Model..
[17] Les A. Piegl,et al. Symbolic operators for NURBS , 1997, Comput. Aided Des..
[18] Gershon Elber,et al. Comparing Offset Curve Approximation Methods , 1997, IEEE Computer Graphics and Applications.
[19] Benjamin B. Kimia,et al. On the Local Form and Transitions of Symmetry Sets, Medial Axes, and Shocks , 2004, International Journal of Computer Vision.
[20] Ian R. Porteous,et al. Geometric differentiation for the intelligence of curves and surfaces , 1994 .
[21] J. Stillwell. Mathematics and Its History , 2020, Undergraduate Texts in Mathematics.
[22] T. Gowers. Princeton companion to mathematics , 2008 .