Effect of beyond mean-field interaction on the structure and dynamics of the one-dimensional quantum droplet

We present simulation results of the ground state structure and dynamics of quantum droplets in one-dimensional spin-orbit coupled binary Bose-Einstein condensates. We have considered two cases for this analysis, such as (i) the mean-field term has a vanishingly small contribution utilizing the equal and opposite inter- and intraspecies interaction and (ii) unequal inter- and intraspecies interaction. For both cases, it shows remarkably different natures of the quantum droplet. In the former case, it exhibits bright sech-like droplet nature, while in the latter case, we find the flattened sech-like shape of the droplet. Further, we analyze the effect of velocity perturbation on the dynamics in both cases. For the first case, we find a systematic change from the solitonic droplet nature to the breathing droplet which finally has a moving droplet feature upon increasing the velocity. However, the second case shows similar dynamics except having more dynamically stable features than the first. Finally, we present various dynamics that ensued in the quantum droplet due to the quenching of the interaction parameters, coupling parameters or allowing the droplet to undergo collisions.

[1]  Paulsamy Muruganandam,et al.  Dynamics of quantum solitons in Lee-Huang-Yang spin-orbit-coupled Bose-Einstein condensates , 2022, Physical Review A.

[2]  A. Nath,et al.  Dynamics of quantum droplets in an external harmonic confinement , 2022, Scientific reports.

[3]  A. Frölian,et al.  Realizing a 1D topological gauge theory in an optically dressed BEC , 2022, Nature.

[4]  Luis E. Young-S.,et al.  Deep inelastic collision of two-dimensional anisotropic dipolar condensate solitons , 2021, Commun. Nonlinear Sci. Numer. Simul..

[5]  P. Schmelcher,et al.  Formation and quench of homonuclear and heteronuclear quantum droplets in one dimension , 2021, Physical Review Research.

[6]  J. Arlt,et al.  Observation of a Lee-Huang-Yang Fluid. , 2020, Physical review letters.

[7]  Sadhan K. Adhikari,et al.  Spin-1 spin-orbit- and Rabi-coupled Bose-Einstein condensate solver , 2020, Comput. Phys. Commun..

[8]  B. Malomed,et al.  A new form of liquid matter: Quantum droplets , 2020, Frontiers of Physics.

[9]  Paulsamy Muruganandam,et al.  Quenching dynamics of the bright solitons and other localized states in spin–orbit coupled Bose–Einstein condensates , 2020, Journal of Physics B: Atomic, Molecular and Optical Physics.

[10]  P. Blakie,et al.  Quantum Droplet States of a Binary Magnetic Gas. , 2020, Physical review letters.

[11]  B. Malomed,et al.  Collective excitations of a one-dimensional quantum droplet , 2020, 2003.05803.

[12]  N. Parker,et al.  Quantum droplets of quasi-one-dimensional dipolar Bose–Einstein condensates , 2020, Journal of Physics Communications.

[13]  B. Malomed,et al.  Modulational Instability, Inter-Component Asymmetry, and Formation of Quantum Droplets in One-Dimensional Binary Bose Gases , 2019, Symmetry.

[14]  M. Prevedelli,et al.  Observation of quantum droplets in a heteronuclear bosonic mixture , 2019, Physical Review Research.

[15]  Luca Salasnich,et al.  Quantum solitons in spin-orbit-coupled Bose-Bose mixtures , 2019, Physical Review A.

[16]  Massimo Inguscio,et al.  Collisions of Self-Bound Quantum Droplets. , 2018, Physical review letters.

[17]  J. Arlt,et al.  Dilute Fluid Governed by Quantum Fluctuations. , 2018, Physical review letters.

[18]  B. A. Malomed,et al.  Dynamics of one-dimensional quantum droplets , 2018, Physical Review A.

[19]  Emerson Chiquillo Quasi-one-dimensional spin-orbit- and Rabi-coupled bright dipolar Bose-Einstein-condensate solitons , 2018, 1801.05333.

[20]  D. Rakshit,et al.  Quantum Bose-Fermi droplets , 2017, SciPost Physics.

[21]  D Baillie,et al.  Droplet Crystal Ground States of a Dipolar Bose Gas. , 2017, Physical review letters.

[22]  P. Cheiney,et al.  Bright Soliton to Quantum Droplet Transition in a Mixture of Bose-Einstein Condensates. , 2017, Physical review letters.

[23]  M. Modugno,et al.  Self-Bound Quantum Droplets of Atomic Mixtures in Free Space. , 2017, Physical review letters.

[24]  P. Cheiney,et al.  Quantum liquid droplets in a mixture of Bose-Einstein condensates , 2018 .

[25]  Boris A. Malomed,et al.  Two-dimensional solitons and quantum droplets supported by competing self- and cross-interactions in spin-orbit-coupled condensates , 2017, 1706.06725.

[26]  P. S. Vinayagam,et al.  Bright soliton dynamics in spin orbit-Rabi coupled Bose-Einstein condensates , 2017, Commun. Nonlinear Sci. Numer. Simul..

[27]  Wolfgang Ketterle,et al.  A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates , 2016, Nature.

[28]  Tilman Pfau,et al.  Self-bound droplets of a dilute magnetic quantum liquid , 2016, Nature.

[29]  L. Santos,et al.  Quantum-Fluctuation-driven crossover from a dilute bose-einstein condensate to a macrodroplet in a dipolar quantum fluid , 2016, 1607.06613.

[30]  D S Petrov,et al.  Ultradilute Low-Dimensional Liquids. , 2016, Physical review letters.

[31]  Tilman Pfau,et al.  Observation of Quantum Droplets in a Strongly Dipolar Bose Gas. , 2016, Physical review letters.

[32]  D. Petrov,et al.  Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. , 2015, Physical review letters.

[33]  G. Palma,et al.  Tunable Polarons in Bose-Einstein Condensates , 2014, Scientific Reports.

[34]  S. Adhikari,et al.  Localization of a spin-orbit-coupled Bose-Einstein condensate in a bichromatic optical lattice , 2014, 1404.4017.

[35]  Hidetsugu Sakaguchi,et al.  Creation of two-dimensional composite solitons in spin-orbit-coupled self-attractive Bose-Einstein condensates in free space. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Massimo Inguscio,et al.  Anderson localization of a non-interacting Bose–Einstein condensate , 2008, Nature.

[37]  Biao Zhou,et al.  Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision , 2008 .

[38]  Kerson Huang,et al.  Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties , 1957 .

[39]  A. M. Martin,et al.  Liquid quantum droplets of ultracold magnetic atoms , 2016 .