On self-orthogonal group ring codes

We obtain structural results about group ring codes over F[G], where F is a finite field of characteristic p > 0 and the Sylow p-subgroup of the Abelian group G is cyclic. As a special case, we characterize cyclic codes over finite fields in the case the length of the code is divisible by the characteristic of the field. By the same approach we study cyclic codes of length m over the ring R = Fq[u], ur = 0 with r  > 0, gcd(m, q) = 1. Finally, we give a construction of quasi-cyclic codes over finite fields.

[1]  Parampalli Udaya,et al.  Cyclic Codes and Self-Dual Codes Over F2 + uF2 , 1999, IEEE Trans. Inf. Theory.

[2]  Abelian Codes , 2022 .

[3]  Mohammad Umar Siddiqi,et al.  Transform domain characterization of Abelian codes , 1992, IEEE Trans. Inf. Theory.

[4]  Patrick Solé,et al.  On the algebraic structure of quasi-cyclic codes III: generator theory , 2005, IEEE Transactions on Information Theory.

[5]  P. Delsarte AUTOMORPHISMS OF ABELIAN CODES , 1970 .

[6]  Taher Abualrub,et al.  Cyclic codes over the rings Z2 + uZ2 and Z2 + uZ2 + u2Z2 , 2007, Des. Codes Cryptogr..

[7]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[8]  Patrick Solé,et al.  On the Algebraic Structure of Quasi-cyclic Codes II: Chain Rings , 2003, Des. Codes Cryptogr..

[9]  Gérald E. Séguin,et al.  Structural properties and enumeration of quasi cyclic codes , 2005, Applicable Algebra in Engineering, Communication and Computing.

[10]  D. Passman,et al.  The algebraic structure of group rings , 1977 .

[11]  S. Berman On the theory of group codes , 1967 .

[12]  Gérald E. Séguin A class of 1-generator quasi-cyclic codes , 2004, IEEE Transactions on Information Theory.

[13]  Hervé Chabanne,et al.  Permutation decoding of Abelian codes , 1992, IEEE Trans. Inf. Theory.

[14]  N. J. A. Sloane,et al.  Cyclic self-dual codes , 1983, IEEE Trans. Inf. Theory.

[15]  Patrick Solé,et al.  On the Algebraic Structure of Quasi-cyclic Codes IV: Repeated Roots , 2006, Des. Codes Cryptogr..

[16]  F. J. Mac Williams Binary codes which are ideals in the group algebra of an abelian group , 1970 .

[17]  Wolfgang Willems,et al.  A note on self-dual group codes , 2002, IEEE Trans. Inf. Theory.

[18]  Patrick Solé,et al.  On the algebraic structure of quasi-cyclic codes I: Finite fields , 2001, IEEE Trans. Inf. Theory.

[19]  James L. Massey,et al.  On Repeated-root Cyclic Codes , 1991, IEEE Trans. Inf. Theory.

[20]  Alexis Bonnecaze,et al.  Cyclic Codes and Self-Dual Codes Over , 1999 .

[21]  Patrick Fitzpatrick,et al.  Algebraic structure of quasicyclic codes , 2001, Discret. Appl. Math..

[22]  Tao Feng Relative (pn,p,pn,n)-difference sets with GCD(p,n)=1 , 2009 .