Utility maximization in incomplete markets with default

We adress the maximization problem of expected utility from terminal wealth. The special feature of this paper is that we consider a financial market where the price process of risky assets can have a default time. Using dynamic programming, we characterize the value function with a backward stochastic differential equation and the optimal portfolio policies. We separately treat the cases of exponential, power and logarithmic utility.

[1]  Neil D. Pearson,et al.  Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case , 1991 .

[2]  M. Frittelli,et al.  INDIFFERENCE PRICE WITH GENERAL SEMIMARTINGALES , 2009, 0905.4657.

[3]  W. Schachermayer,et al.  The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .

[4]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[5]  Monique Jeanblanc,et al.  Hedging of Defaultable Claims , 2004 .

[6]  P. Meyer,et al.  Probabilités et potentiel , 1966 .

[7]  N. Karoui Les Aspects Probabilistes Du Controle Stochastique , 1981 .

[8]  J. Cox,et al.  Optimal consumption and portfolio policies when asset prices follow a diffusion process , 1989 .

[9]  R. C. Merton,et al.  Optimum Consumption and Portfolio Rules in a Continuous-Time Model* , 1975 .

[10]  G. Barles,et al.  Backward stochastic differential equations and integral-partial differential equations , 1997 .

[11]  W. Schachermayer Optimal investment in incomplete markets when wealth may become negative , 2001 .

[12]  Xunjing Li,et al.  Necessary Conditions for Optimal Control of Stochastic Systems with Random Jumps , 1994 .

[13]  Robert J. Elliott,et al.  On Models of Default Risk , 2000 .

[14]  Monique Jeanblanc,et al.  Hazard rate for credit risk and hedging defaultable contingent claims , 2004, Finance Stochastics.

[15]  S. Peng A general stochastic maximum principle for optimal control problems , 1990 .

[16]  M. Royer Backward stochastic differential equations with jumps and related non-linear expectations , 2006 .

[17]  M. Morlais Utility maximization in a jump market model , 2006, math/0612181.

[18]  Hai-ping Shi Backward stochastic differential equations in finance , 2010 .

[19]  Marc Yor,et al.  Changes of filtrations and of probability measures , 1978 .

[20]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[21]  B. Bouchard,et al.  Discrete time approximation of decoupled Forward-Backward SDE with jumps , 2008 .

[22]  P. Imkeller,et al.  Utility maximization in incomplete markets , 2005, math/0508448.

[23]  M. Yor,et al.  Mathematical Methods for Financial Markets , 2009 .

[24]  Shigeo Kusuoka,et al.  A Remark on default risk models , 1999 .

[25]  Nicole El Karoui,et al.  Pricing Via Utility Maximization and Entropy , 2000 .

[26]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[27]  S. Shreve,et al.  Optimal portfolio and consumption decisions for a “small investor” on a finite horizon , 1987 .

[28]  Larry G. Epstein,et al.  Stochastic differential utility , 1992 .

[29]  T. Bielecki,et al.  Credit Risk: Modeling, Valuation And Hedging , 2004 .

[30]  N. Karoui,et al.  Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market , 1995 .

[31]  Hui Wang,et al.  Utility maximization in incomplete markets with random endowment , 2001, Finance Stochastics.

[32]  F. Delbaen,et al.  Exponential Hedging and Entropic Penalties , 2002 .

[33]  S. Shreve,et al.  Martingale and duality methods for utility maximization in a incomplete market , 1991 .

[34]  P. Protter Stochastic integration and differential equations , 1990 .

[35]  M. Kobylanski Backward stochastic differential equations and partial differential equations with quadratic growth , 2000 .

[36]  Huyên Pham,et al.  Optimisation et contrôle stochastique appliqués à la finance , 2007 .