An adaptive virtual node algorithm with robust mesh cutting

We present a novel virtual node algorithm (VNA) for changing tetrahedron mesh topology to represent arbitrary cutting triangulated surfaces. Our approach addresses a number of shortcomings in the original VNA of [MBF04]. First, we generalize the VNA so that cuts can pass through tetrahedron mesh vertices and lie on mesh edges and faces. The original algorithm did not make sense for these cases and required often ambiguous perturbation of the cutting surface to avoid them. Second, we develop an adaptive approach to the definition of embedded material used for element duplication. The original algorithm could only handle a limited number of configurations which restricted cut surfaces to have curvature at the scale of the tetrahedron elements. Our adaptive approach allows for cut surfaces with curvatures independent of the embedding tetrahedron mesh resolution. Finally, we present a novel, provably-robust floating point mesh intersection routine that accurately registers triangulated surface cuts against the background tetrahedron mesh without the need for exact arithmetic.

[1]  Jérémie Allard,et al.  Volumetric modeling and interactive cutting of deformable bodies. , 2010, Progress in biophysics and molecular biology.

[2]  Simon Wildermuth,et al.  A survey of interactive mesh-cutting techniques and a new method for implementing generalized interactive mesh cutting using virtual tools , 2002, Comput. Animat. Virtual Worlds.

[3]  Nuttapong Chentanez,et al.  Real time dynamic fracture with volumetric approximate convex decompositions , 2013, ACM Trans. Graph..

[4]  Ronald Fedkiw,et al.  A virtual node algorithm for changing mesh topology during simulation , 2004, SIGGRAPH 2004.

[5]  Ronald Fedkiw,et al.  Arbitrary cutting of deformable tetrahedralized objects , 2007, SCA '07.

[6]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[7]  Ronald Fedkiw,et al.  Energy stability and fracture for frame rate rigid body simulations , 2009, SCA '09.

[8]  Mathieu Desbrun,et al.  Numerical coarsening of inhomogeneous elastic materials , 2009, SIGGRAPH 2009.

[9]  Markus H. Gross,et al.  Interactive simulation of surgical cuts , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[10]  Takeo Kanade,et al.  Modifying Soft Tissue Models: Progressive Cutting with Minimal New Element Creation , 2000, MICCAI.

[11]  Ronald Fedkiw,et al.  Creating and simulating skeletal muscle from the visible human data set , 2005, IEEE Transactions on Visualization and Computer Graphics.

[12]  Petros Faloutsos,et al.  Dynamic Free-Form Deformations for Animation Synthesis , 1997, IEEE Trans. Vis. Comput. Graph..

[13]  Andrew Witkin,et al.  Fast and Controllable Simulation of the Shattering of Brittle Objects , 2001 .

[14]  Robert Bacon,et al.  Animation of fracture by physical modeling , 1991, The Visual Computer.

[15]  Jun Wu,et al.  Physically-based Simulation of Cuts in Deformable Bodies: A Survey , 2014, Eurographics.

[16]  Michael Neff,et al.  A Visual Model For Blast Waves and Francture , 1999, Graphics Interface.

[17]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[18]  G. Turk,et al.  Fast viscoelastic behavior with thin features , 2008, SIGGRAPH 2008.

[19]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, SIGGRAPH 2004.

[20]  F Frisken-GibsonSarah Using Linked Volumes to Model Object Collisions, Deformation, Cutting, Carving, and Joining , 1999 .

[21]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[22]  Oleg Mazarak,et al.  Animating Exploding Objects , 1999, Graphics Interface.

[23]  M. Gross,et al.  Deforming meshes that split and merge , 2009, SIGGRAPH 2009.

[24]  Hervé Delingette,et al.  Removing tetrahedra from a manifold mesh , 2002, Proceedings of Computer Animation 2002 (CA 2002).

[25]  Han-Wen Nienhuys,et al.  Combining finite element deformation with cutting for surgery simulations , 2000, Eurographics.

[26]  Stephane Cotin,et al.  A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation , 2000, The Visual Computer.

[27]  James F. O'Brien,et al.  Dynamic local remeshing for elastoplastic simulation , 2010, SIGGRAPH 2010.

[28]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[29]  James F. O'Brien,et al.  Real-time deformation and fracture in a game environment , 2009, SCA '09.

[30]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[31]  Chenfanfu Jiang,et al.  A level set method for ductile fracture , 2013, SCA '13.

[32]  Z. Popovic,et al.  Interactive skeleton-driven dynamic deformations , 2002, ACM Trans. Graph..

[33]  Ronald Fedkiw,et al.  Fracturing Rigid Materials , 2007, IEEE Transactions on Visualization and Computer Graphics.

[34]  Greg Turk,et al.  A finite element method for animating large viscoplastic flow , 2007, SIGGRAPH 2007.

[35]  L. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..

[36]  S. F. Frisken-Gibson Using linked volumes to model object collisions, deformation, cutting, carving, and joining , 1999 .

[37]  Matthias Teschner,et al.  Constraint Sets for Topology-changing Finite Element Models , 2007, VRIPHYS.

[38]  James F. O'Brien,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2006) Generating Surface Crack Patterns , 2022 .

[39]  James F. O'Brien,et al.  Simulating liquids and solid-liquid interactions with lagrangian meshes , 2013, TOGS.

[40]  Jagnow Robert Carl,et al.  Real-time simulation of deformation and fracture of stiff materials , 2001 .