All-optical synchronization for quantum networking

We report an original all-optical synchronization scheme suitable for a quantum relay based experiments at telecom wavelengths. Our scheme is validated by a two-photon interference visibility greater than 99% at the relay station.

[1]  S. Assefa,et al.  Heralded single photons from a silicon nanophotonic chip , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[2]  Jian-Wei Pan,et al.  Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories. , 2008, Physical review letters.

[3]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[4]  H. Herrmann,et al.  A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength , 2010, 2010 12th International Conference on Transparent Optical Networks.

[5]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[6]  S. Massar Nonlocality, closing the detection loophole, and communication complexity , 2001, quant-ph/0109008.

[7]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[8]  H. Takesue,et al.  Quantum teleportation over 100 km of fiber using highly-efficient superconducting nanowire single photon detectors , 2015, 1510.00476.

[9]  A. Nicolas,et al.  A quantum memory for orbital angular momentum photonic qubits , 2013, Nature Photonics.

[10]  Fumihiro Kaneda,et al.  Time-multiplexed heralded single-photon source , 2015, 1507.06052.

[11]  Aephraim M. Steinberg,et al.  High-visibility interference in a Bell-inequality experiment for energy and time. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[12]  Travis Norsen,et al.  Bell's theorem , 2011, Scholarpedia.

[13]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[14]  M. Fejer,et al.  Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock. , 2007, Optics express.

[15]  V. Scarani,et al.  Towards practical and fast Quantum Cryptography , 2004, quant-ph/0411022.

[16]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[17]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[18]  Demonstrating high symmetric single-mode single-photon heralding efficiency in spontaneous parametric downconversion , 2013, CLEO 2013.

[19]  J. Brendel,et al.  Experimental Test of Bell's Inequality for Energy and Time , 1992 .

[20]  Ivan Favero,et al.  Photon pair sources in AlGaAs: from electrical injection to quantum state engineering , 2015 .

[21]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[22]  Bo Zhao,et al.  Efficient and long-lived quantum memory with cold atoms inside a ring cavity , 2012, Nature Physics.

[23]  Nicolas Gisin,et al.  Waveguide-based OPO source of entangled photon pairs , 2009, 0909.1208.

[24]  H. Riedmatten,et al.  Photon-bunching measurement after two 25-km-long optical fibers (5 pages) , 2005 .

[25]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[26]  O. Alibart,et al.  Two-photon interference between disparate sources for quantum networking , 2013, Scientific Reports.

[27]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[28]  Yang Liu,et al.  The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. , 2015, The Review of scientific instruments.

[29]  Jian-Wei Pan,et al.  Quantum teleportation and entanglement distribution over 100-kilometre free-space channels , 2012, Nature.

[30]  M. Ghioni,et al.  An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies , 2012, 1301.2090.

[31]  M. Fejer,et al.  Quasi-phase-matched second harmonic generation: tuning and tolerances , 1992 .

[32]  Hiroki Takesue,et al.  Entanglement distribution over 300 km of fiber. , 2013, Optics express.

[33]  Olga Smirnova,et al.  Nature in London , 2016 .

[34]  W. Sohler,et al.  Integrated optical source of polarization entangled photons at 1310 nm. , 2009, Optics express.

[35]  V.F. Kleist,et al.  The code book: the science of secrecy from ancient egypt to quantum cryptography [Book Review] , 2002, IEEE Annals of the History of Computing.

[36]  Ou,et al.  Violation of Bell's inequality and classical probability in a two-photon correlation experiment. , 1988, Physical review letters.

[37]  Kyo Inoue,et al.  Entanglement formation and violation of Bell's inequality with a semiconductor single photon source. , 2004, Physical review letters.

[38]  N. Gisin,et al.  Experimental investigation of the robustness of partially entangled qubits over 11 km , 2002 .

[39]  Qiang Zhou,et al.  Measurement-device-independent quantum key distribution: from idea towards application , 2015, 1501.07307.

[40]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[41]  Kyo Inoue,et al.  Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop , 2004 .

[42]  N. Gisin,et al.  Detector imperfections in photon-pair source characterization , 2011, 1109.0194.

[43]  Sandu Popescu,et al.  A Quantum Delayed-Choice Experiment , 2012, Science.

[44]  Randall C. Thompson,et al.  Experimental Test of Local Hidden-Variable Theories , 1976 .

[45]  Akio Yoshizawa,et al.  Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides , 2003 .

[46]  Pascal Baldi,et al.  Soft proton exchange on periodically poled LiNbO3: A simple waveguide fabrication process for highly efficient nonlinear interactions , 2000 .

[47]  A. Zeilinger,et al.  Teleportation of entanglement over 143 km , 2014, Proceedings of the National Academy of Sciences.

[48]  Jianzhao Li,et al.  Spectral Loss Characterization of Femtosecond Laser Written Waveguides in Glass With Application to Demultiplexing of 1300 and 1550 nm Wavelengths , 2009, Journal of Lightwave Technology.

[49]  G. Buller,et al.  Quantum key distribution system clocked at 2 GHz. , 2005, Optics express.

[50]  P. Grangier,et al.  Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory. , 2013, Physical review letters.

[51]  Brian J Smith,et al.  Conditional preparation of single photons using parametric downconversion: a recipe for purity , 2008, 0807.1409.

[52]  Sae Woo Nam,et al.  Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors , 2007, 0706.0397.

[53]  David G. Lancaster,et al.  Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics , 2012 .

[54]  P. Bassi,et al.  High performance mode adapters based on segmented SPE:LiNbO3 waveguides. , 2009, Optics express.

[55]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[56]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[57]  Paul L Voss,et al.  Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. , 2004, Physical review letters.

[58]  B J Eggleton,et al.  Enhancing the heralded single-photon rate from a silicon nanowire by time and wavelength division multiplexing pump pulses. , 2015, Optics letters.

[59]  Masahide Sasaki,et al.  Analysis of detector performance in a gigahertz clock rate quantum key distribution system , 2011 .

[60]  Armando N. Pinto,et al.  Polarization-entangled photon pairs using spontaneous four-wave mixing in a fiber loop , 2011, 2011 IEEE EUROCON - International Conference on Computer as a Tool.

[61]  G. Marshall,et al.  Non-classical interference in integrated 3D multiports. , 2012, Optics express.

[62]  N. Gisin,et al.  Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory , 2014, Nature Photonics.

[63]  Peter Dekker,et al.  Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure. , 2008, Optics express.

[64]  Jun Chen,et al.  All-fiber photon-pair source for quantum communications: Improved generation of correlated photons. , 2004 .

[65]  Xiaosong Ma,et al.  Quantum teleportation over 143 kilometres using active feed-forward , 2012, Nature.

[66]  H. Weinfurter,et al.  Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors , 2011, 1101.5289.

[67]  Jelena Vucković,et al.  Efficient source of single photons: a single quantum dot in a micropost microcavity. , 2002, Physical review letters.