Non-linear control variates for regenerative steady-state simulation

We assume the existence of a parameterized family of control variates that could be used in a regenerative steady-state simulation. We show how such controls can be generated in the Markov-process setting, discuss the optimization problem of searching for a good choice of parameterization, and develop a strong law and central limit theorem for the resulting estimator.

[1]  W. Whitt Planning queueing simulations , 1989 .

[2]  S. Juneja,et al.  Rare-event Simulation Techniques : An Introduction and Recent Advances , 2006 .

[3]  Søren Asmussen,et al.  Queueing Simulation in Heavy Traffic , 1992, Math. Oper. Res..

[4]  Sean P. Meyn,et al.  Performance Evaluation and Policy Selection in Multiclass Networks , 2003, Discret. Event Dyn. Syst..

[5]  K. Athreya,et al.  A New Approach to the Limit Theory of Recurrent Markov Chains , 1978 .

[6]  P. Shahabuddin,et al.  Chapter 11 Rare-Event Simulation Techniques: An Introduction and Recent Advances , 2006, Simulation.

[7]  Philippe L. Toint,et al.  Convergence theory for nonconvex stochastic programming with an application to mixed logit , 2006, Math. Program..

[8]  W.,et al.  Conditions for the Applicability of the Regenerative Method* , 1993 .

[9]  Svante Janson,et al.  Renewal Theory for $M$-Dependent Variables , 1983 .

[10]  E. Nummelin,et al.  A splitting technique for Harris recurrent Markov chains , 1978 .

[11]  Stefano Giordano,et al.  Rare event simulation , 2002, Eur. Trans. Telecommun..

[12]  Sujin Kim,et al.  Adaptive Control Variates for Finite-Horizon Simulation , 2007, Math. Oper. Res..

[13]  P. L’Ecuyer,et al.  On the interchange of derivative and expectation for likelihood ratio derivative estimators , 1995 .

[14]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[15]  Nigel J. Newton Variance Reduction for Simulated Diffusions , 1994, SIAM J. Appl. Math..

[16]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[17]  Peter W. Glynn,et al.  Regenerative steady-state simulation of discrete-event systems , 2001, TOMC.

[18]  Peter W. Glynn,et al.  Approximating Martingales for Variance Reduction in Markov Process Simulation , 2002, Math. Oper. Res..

[19]  Ward Whitt,et al.  Indirect Estimation Via L = λW , 1989, Oper. Res..

[20]  P. Glynn,et al.  Notes: Conditions for the Applicability of the Regenerative Method , 1993 .

[21]  Donald L. Iglehart,et al.  Regenerative Simulation with Internal Controls , 1979, JACM.

[22]  Agnès Lagnoux,et al.  RARE EVENT SIMULATION , 2005, Probability in the Engineering and Informational Sciences.