Free final time fractional optimal control problems

Abstract A formulation and solution scheme of free final time fractional optimal control problems is presented in this paper. The dynamic constraint is described by a fractional differential equation. Performance index considered is a function of both the state and control variables. The necessary conditions of optimality and the transversality condition are obtained using Lagrange multiplier technique. A numerical technique similar to Shooting method is used for solving the optimal conditions. Numerical example is provided to show the effectiveness of the formulation and numerical solution scheme. It is interesting to note that the final time changes with the interchange of the boundary conditions, which does not occur in classical optimal control problems.

[1]  T. Hartley,et al.  Dynamics and Control of Initialized Fractional-Order Systems , 2002 .

[2]  O. Agrawal,et al.  A Hamiltonian Formulation and a Direct Numerical Scheme for Fractional Optimal Control Problems , 2007 .

[3]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[4]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[5]  O. Agrawal A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .

[6]  S. Sen,et al.  Fractional Optimal Control Within Caputo’s Derivative , 2011 .

[7]  Siddhartha Sen,et al.  Fractional optimal control problems: a pseudo-state-space approach , 2011 .

[8]  Yangquan Chen,et al.  Computers and Mathematics with Applications an Approximate Method for Numerically Solving Fractional Order Optimal Control Problems of General Form Optimal Control Time-optimal Control Fractional Calculus Fractional Order Optimal Control Fractional Dynamic Systems Riots_95 Optimal Control Toolbox , 2022 .

[9]  Dumitru Baleanu,et al.  A Central Difference Numerical Scheme for Fractional Optimal Control Problems , 2008, 0811.4368.

[10]  Siddhartha Sen,et al.  Fractional Optimal Control Problems With Specified Final Time , 2011 .

[11]  O. Agrawal,et al.  Fractional optimal control problem of an axis-symmetric diffusion-wave propagation , 2009 .

[12]  Necati Özdemir,et al.  Fractional optimal control problem of a distributed system in cylindrical coordinates , 2009 .

[13]  Y. Chen,et al.  Time-Optimal Control of Systems with Fractional Dynamics , 2010 .

[14]  S. Sen,et al.  Numerical Method for Solving Fractional Optimal Control Problems , 2009 .

[15]  I. Podlubny Fractional differential equations , 1998 .

[16]  Dumitru Baleanu,et al.  Fractional Constrained Systems and Caputo Derivatives , 2008 .

[17]  T. Atanacković,et al.  Variational problems with fractional derivatives: Euler–Lagrange equations , 2008, 1101.2961.

[18]  J. L. Adams,et al.  The inverted initialization problem for fractional-order derivatives , 2009 .

[19]  D.Baleanu,et al.  Lagrangians with linear velocities within Riemann-Liouville fractional derivatives , 2004 .

[20]  D. Naidu,et al.  Optimal Control Systems , 2018 .

[21]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.

[22]  Zoran D. Jelicic,et al.  Optimality conditions and a solution scheme for fractional optimal control problems , 2009 .

[23]  O. Agrawal Fractional Optimal Control of a Distributed System Using Eigenfunctions , 2007 .

[24]  Dumitru Baleanu,et al.  Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives , 2005 .

[25]  T. Hartley,et al.  Initialization of Fractional-Order Operators and Fractional Differential Equations , 2008 .

[26]  Om P. Agrawal,et al.  Fractional Optimal Control of Continuum Systems , 2009 .

[27]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .