A Model of Adaptive Control of Vestibuloocular Reflex Based on Properties of Cross‐Axis Adaptation a

[1]  F. Crépel,et al.  Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study , 1988, Brain Research.

[2]  E. W. Kairiss,et al.  Long-Term Potentiation in Two Synaptic Systems of the Hippocampal Brain Slice , 1989 .

[3]  R. Llinás,et al.  Real-time imaging of calcium influx in mammalian cerebellar Purkinje cells in vitro. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[4]  H. Noda,et al.  Eye position signals in the flocculus of the monkey during smooth‐pursuit eye movements , 1982, The Journal of physiology.

[5]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[6]  G M Jones,et al.  A reevaluation of intervestibular nuclear coupling: its role in vestibular compensation. , 1984, Journal of neurophysiology.

[7]  N. Isu,et al.  Dynamics of adaptive change in vestibulo-ocular reflex direction. II. Sagittal plane rotations , 1986, Brain Research.

[8]  L. Optican,et al.  Cerebellar-dependent adaptive control of primate saccadic system. , 1980, Journal of neurophysiology.

[9]  Yu Sato,et al.  Target neurons of floccular middle zone inhibition in medial vestibular nucleus , 1988, Brain Research.

[10]  J. Simpson,et al.  Spatial organization of visual messages of the rabbit's cerebellar flocculus. II. Complex and simple spike responses of Purkinje cells. , 1988, Journal of neurophysiology.

[11]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[12]  T. Sejnowski,et al.  Associative long-term depression in the hippocampus induced by hebbian covariance , 1989, Nature.

[13]  F A Miles,et al.  Signals used to compute errors in monkey vestibuloocular reflex: possible role of flocculus. , 1984, Journal of neurophysiology.

[14]  G. Jones,et al.  Short‐term adaptive changes in the human vestibulo‐ocular reflex arc , 1976, The Journal of physiology.

[15]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[16]  A. A. Skavenski,et al.  Role of abducens neurons in vestibuloocular reflex. , 1973, Journal of neurophysiology.

[17]  Masao Ito,et al.  Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells , 1982, The Journal of physiology.

[18]  L H Snyder,et al.  Vertical vestibuloocular reflex in cat: asymmetry and adaptation. , 1988, Journal of neurophysiology.

[19]  J. Baker,et al.  Motor output to lateral rectus in cats during the vestibulo-ocular reflex in three-dimensional space , 1988, Neuroscience.

[20]  David Robinson,et al.  DIRECTIONAL PLASTICITY OF THE VESTIBULO‐OCULAR REFLEX IN THE CAT * , 1981 .

[21]  R M Steinman,et al.  Compensatory eye movements during active and passive head movements: fast adaptation to changes in visual magnification. , 1983, The Journal of physiology.

[22]  H. Galiana A new approach to understanding adaptive visual-vestibular interactions in the central nervous system. , 1986, Journal of neurophysiology.

[23]  Naoki Isu,et al.  Dynamics of adaptive change in vestibulo-ocular reflex direction. I. Rotations in the horizontal plane , 1986, Brain Research.

[24]  D. Robinson,et al.  Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. , 1987, Journal of neurophysiology.

[25]  C. Ekerot,et al.  Climbing Fibre Actions of Purkinje Cells — Plateau Potentials and Long-Lasting Depression of Parallel Fibre Responses , 1984 .

[26]  D. Robinson,et al.  Oculomotor signals in medial longitudinal fasciculus of the monkey. , 1978, Journal of neurophysiology.

[27]  F. A. Miles,et al.  Long-term adaptive changes in primate vestibuloocular reflex. IV. Electrophysiological observations in flocculus of adapted monkeys. , 1980, Journal of neurophysiology.

[28]  S G Lisberger,et al.  The neural basis for learning of simple motor skills. , 1988, Science.

[29]  R. Baker,et al.  Afferent and efferent organization of the prepositus hypoglossi nucleus. , 1979, Progress in brain research.

[30]  J. Albus A Theory of Cerebellar Function , 1971 .

[31]  M. Ito Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis. , 1982, Annual review of neuroscience.

[32]  M. Ito,et al.  Long-term depression. , 1989, Annual review of neuroscience.

[33]  M. S. Estes,et al.  Physiologic characteristics of vestibular first-order canal neurons in the cat. I. Response plane determination and resting discharge characteristics. , 1975, Journal of neurophysiology.

[34]  W. Precht,et al.  Pharmacological aspects of excitatory synaptic transmission to second‐order vestibular neurons in the frog , 1987, Synapse.

[35]  T. Kno¨pfel Evidence forN-methyl-d-aspartic acid receptor-mediated modulation of the commissural input to central vestibular neurons of the frog , 1987, Brain Research.

[36]  F A Miles,et al.  Long-term adaptive changes in primate vestibuloocular reflex. I. Behavioral observations. , 1980, Journal of neurophysiology.

[37]  B. Peterson,et al.  Dependence of cat vestibulo-ocular reflex direction adaptation on animal orientation during adaptation and rotation in darkness , 1987, Brain Research.

[38]  D. Robinson Adaptive gain control of vestibuloocular reflex by the cerebellum. , 1976, Journal of neurophysiology.

[39]  Nestor A. Schmajuk,et al.  Modeling the three neuron vestibulo-ocular reflex arc: contribution to eye movement computation , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[40]  W. Precht,et al.  Adaptive modification of central vestibular neurons in response to visual stimulation through reversing prisms. , 1979, Journal of neurophysiology.