Preparation, characterization, solution properties and rheological behaviour of polyacrylamide

In this report a survey is given on structure and properties of polyacrylamide homopolymers (PAAm) in solution. However the review is restricted to all those papers, where a molecular characterization of the polymers has been achieved as a basis to correlate this fundamental information with applicational properties. Different polymerization methods are summarised in brief, the preparation and solution structure of long chain branched polyacrylamides as well as chemical modification reactions of linear PAAm are also mentioned. A number of experimental characterization methods (GPC, ultracentrifugation, intrinsic viscosity, and light scattering measurements) are described with special emphasis on the difficulties of the different procedures including some proposals for properly designed experimental techniques. The state of solution is discussed in view of experimental data obtained with different solvents. Moreover viscosity constant o is calculated for aqueous solution and the unperturbed dimensions are estimated. All available data on cross correlations (e.g. [η] - M, S0 - M, 12 - M) are collected with the intention to give a survey of established relations and, comparing the given relationships, to suggest the reliable ones of them. The phenomenon of long-term viscosity decrease of aqueous PAAm solutions has been investigated and discussed with regard to its molecular origin. The viscoelastic properties are discussed in dependence on molecular weight, concentration, solvent quality, and shear rate (⩽106 · s−1). Based on these data a simple equation was developed oped for the η0-c-M relationship, which can be applied to other polymer systems as well. It is further described that the elastic nature (first normal stress difference) may overwhelm the viscous nature (shear stress) at relatively low shear rates. This high elasticity can cause deviation from laminar flow conditions. Moreover, it can be demonstrated — based on instationary measurements as well as the comparison of steady shear flow with dynamic rheology — that energetic interactions (H-bonds) strongly influence the rheological behaviour.

[1]  D. Griffiths,et al.  On edge effects in rheometry , 1970, Journal of Fluid Mechanics.

[2]  R. M. Fuoss,et al.  Amphoteric Polyelectrolytes. II. Copolymers of Methacrylic Acid and Diethylaminoethyl Methacrylate1 , 1952 .

[3]  R. Turian Perturbation Solution of the Steady Newtonian Flow in the Cone and Plate and Parallel Plate Systems , 1972 .

[4]  C. R. Noller Methoden der organischen Chemie. , 1954 .

[5]  G. S. Misra,et al.  Aqueous polymerization of acrylamide by persulphate/thiolactic acid initiator system , 1978 .

[6]  S. Saito Solubilisation von Polymeren durch Nicht-Ionische Tenside , 1968 .

[7]  H. Morawetz,et al.  Polymerization in the crystalline state. I. Acrylamide , 1960 .

[8]  F. Dainton,et al.  The polymerization of acrylamide in aqueous solution. Part 2.—The effect of ferric perchlorate on the X- and γ-ray initiated reaction , 1957 .

[9]  J. Wales,et al.  Relations between steady flow and oscillatory shear measurements , 1970 .

[10]  D. V. Boger Demonstration of upper and lower Newtonian fluid behaviour in a pseudoplastic fluid , 1977, Nature.

[11]  J. Klein,et al.  Zur Präparation und Charakterisierung hochmolekularer Polyacrylamide , 1978 .

[12]  W. Bough,et al.  Determination of molecular-weght distribution of chitosan by high-performance liquid chromatography , 1976 .

[13]  J. Suzuki,et al.  Ozone treatment of water‐soluble polymers. III. Ozone degradation of polyacrylamide in water , 1978 .

[14]  C. Cho,et al.  Interaction between poly(L-glutamic acid) and poly(vinyl alcohol) , 1978 .

[15]  W. Kulicke,et al.  Langfristige konformationsänderung von makromolekülen in lösung, 1. Polyacrylamide , 1980 .

[16]  W. Kulicke,et al.  Relation between steady shear flow and dynamic rheology , 1980 .

[17]  C. Holloway,et al.  Characterisation of cross-linked poly(acryloylmorpholines) as matrices for aqueous gel permeation chromatography , 1974 .

[18]  G. S. Misra,et al.  Kinetics of the aqueous polymerization of acrylamide initiated by the permanganate- tartaric acid redox system , 1974 .

[19]  T. Aminabhavi,et al.  Some Solution Properties of Polyacrylamide , 1980 .

[20]  E. B. Bagley The Separation of Elastic and Viscous Effects in Polymer Flow , 1961 .

[21]  A. Hamielec,et al.  The effect of shear rate on the molecular weight determination of acrylamide polymers from intrinsic viscosity measurements , 1979 .

[22]  H. Giesekus Sekundärströmungen in viskoelastischen Flüssigkeiten bei stationärer und periodischer Bewegung , 1965 .

[23]  F. Dainton,et al.  The oxidation and reduction of free radicals by metal ions in aqueous solution , 1960 .

[24]  R. Tanner,et al.  The flow of high polymers , 1968 .

[25]  R. Porter,et al.  Steady‐state and dynamic rheology of poly(1‐olefin) melts , 1978 .

[26]  R. Epton,et al.  Synthesis and characterization of poly(acryloyl morpholine) xerogel networks suitable for the gel permeation chromatography of small molecules , 1976 .

[27]  J. T. Stuart Nonlinear Stability Theory , 1971, Handbook of Marine Craft Hydrodynamics and Motion Control.

[28]  A. L. Spatorico,et al.  Exclusion chromatography using porous glass. II. Application to hydrophilic polymers , 1975 .

[29]  Hiromi Yamakawa,et al.  Modern Theory of Polymer Solutions , 1971 .

[30]  W. Schnell,et al.  Chromatographische anwendung des polyäthylenglykol-dimethacrylat-gels merckogel® PGM 2000 unter normal- und hochdruck , 1971 .

[31]  W. Graessley,et al.  Experimental tests of constitutive relations for polymers undergoing uniaxial shear flows , 1977 .

[32]  J. Klein,et al.  Rheologische Untersuchungen zur Struktur hochmolekularer Polyacrylamide in wrigen und nichtwrigen Lsungen: Teil 1: Fliekurven mig konzentrierter Lsungen , 1976 .

[33]  N. Narkis,et al.  Ageing effects in measurements of polyacrylamide solution viscosities , 1966 .

[34]  G. Smets,et al.  Hydrolysis of polyacrylamide and acrylic acid-acrylamide copolymers , 1959 .

[35]  W. Kulicke,et al.  High‐shear viscometry of polymer solutions , 1981 .

[36]  T. Schwartz,et al.  Crossover from the theta to the Excluded Volume Single Chain Statistics: New Experimental Evidences and a Modified Blob Model , 1980 .

[37]  P. G. de Gennes,et al.  Dynamics of Entangled Polymer Solutions. I. The Rouse Model , 1976 .

[38]  A. F. Talbot High shear viscometry of concentrated solutions of poly (alkylmethacrylate) in a petroleum lubricating oil , 1974 .

[39]  W. Gleissle Druckverteilung im Spalt eines Kegel-Platte-Rheometers bei der Scherung viskoelastischer Flüssigkeiten mit hohen Schergeschwindigkeiten , 1976 .

[40]  S. Takao,et al.  Relationship between polymer concentration and molecular weight in the viscosity behavior of concentrated solution , 1968 .

[41]  J. Schurz Strukturrheologische Untersuchungen an konzentrierten Polymerlösungen , 1968 .

[42]  A. T. Aldred,et al.  Thermodynamic Properties of Solid Vanadium-Iron Alloys1 , 1964 .

[43]  J. Smith,et al.  Photopolymerization of acrylamide in an annular flow reactor , 1973 .

[44]  D. R. Paul,et al.  Elastic fracture of polystyrene solutions , 1974 .

[45]  K. Illers Die Glastemperatur von Copolymeren , 1963 .

[46]  S. Onogi,et al.  Rheological Properties of Disperse Systems of Spherical Particles in Polystyrene Solution at Long Time‐Scales , 1975 .

[47]  R. Dawson,et al.  Residual anionic properties of a covalently substituted controlled-pore glass, glyceryl-CPG. , 1976, Journal of chromatography.

[48]  C. McDonald,et al.  The Mannich Reaction of Poly(acrylamide) , 1979 .

[49]  M. Daoud,et al.  Experimental determination of the temperature–concentration diagram of flexible polymer solutions by neutron scattering , 1976 .

[50]  Von W. Burchard ÜBer den einfluß der lösungsmittel auf die struktur linearer makromoleküle. I , 1961 .

[51]  W. Cox,et al.  Correlation of dynamic and steady flow viscosities , 1958 .

[52]  W. O. Kenyon,et al.  Imidization during polymerization of acrylamide , 1974 .

[53]  D. Cheng The effect of secondary flow on the viscosity measurement using the cone-and-plate viscometer , 1968 .

[54]  J. Meissner Modifications of the weissenberg rheogoniometer for measurement of transient rheological properties of molten polyethylene under shear. Comparison with tensile data , 1972 .

[55]  W. MacKnight,et al.  Effect of hydrogen bonding and ionic aggregation on the melt rheology of an ethylene–methacrylic acid copolymer and its sodium salt , 1978 .

[56]  S. N. Bhadani,et al.  Simultaneous anodic and cathodic polymerizations of acrylamide , 1977 .

[57]  H. Schott Rheology of molten polymers , 1968 .

[58]  W. Kulicke,et al.  Inertial normal-force corrections in rotational rheometry , 1977 .

[59]  W. Kulicke,et al.  Eine ?-c-M-beziehung fr polymerlsungen , 1980 .

[60]  J. Klein,et al.  Characterisation of poly(acrylamide) in solution , 1980 .

[61]  W. Kern,et al.  Untersuchungen über die radikalpolymerisation von acrylamid , 1954 .

[62]  T. Suen,et al.  Ionic Derivatives of Polyacrylamide , 1956 .

[63]  E. Barthell,et al.  Water soluble acrylamide polymers, 2. Aging and viscous flow of aqueous solutions of polyacrylamide and hydrolyzed polyacrylamide† , 1980 .

[64]  J. Schurz,et al.  Anlaufmessungen in einem Rotationsviskosimeter , 1969 .

[65]  W. Graessley,et al.  Geometry Effects on Stress Transient Data Obtained by Cone and Plate Flow , 1977 .

[66]  W. Kulicke,et al.  Purification of aqueous and non‐aqueous polymer solutions for light scattering measurements and a comparison of molecular weights determined with a low‐angle and a wide‐angle photometer , 1980 .

[67]  E. B. Christiansen,et al.  Steady‐State and Oscillatory Flow Properties of Polymer Solutions , 1974 .

[68]  E. B. Bagley Hooke's Law in Shear and Polymer Melt Fracture , 1960 .

[69]  J. Lainé,et al.  High-molecular-weight hydrolyzed polyacrylamides. I. Characterization. Effect of salts on the conformational properties , 1979 .

[70]  R. L. Macdonald,et al.  Dichotomies in the viscosity stability of polyacrylamide solutions. I , 1972 .

[71]  H. Narita,et al.  Polymerization of acrylamide initiated with pinacol–ceric ion redox system , 1970 .

[72]  S. N. Bhadani,et al.  Anodic gel polymerization of acrylamide , 1977 .

[73]  M. M. Cross Polymer rheology: Influence of molecular weight and polydispersity , 1969 .

[74]  A. Hamielec,et al.  Shear degradation of water‐soluble polymers. I. Degradation of polyacrylamide in a high‐shear couette viscometer , 1973 .

[75]  M. Denn,et al.  Flow Instability in Polymer Melt Extrusion , 1973 .

[76]  V. L. Kocherov,et al.  Flow of polymer melts in a disc‐type extruder and in rotational devices of the “cone‐plate” and “plate‐plate” type , 1973 .

[77]  T. Schwartz,et al.  Polyacrylamide in water: molecular weight dependence of 〈R2〉 and [η] and the problem of the excluded volume exponent , 1979 .

[78]  T. Schwartz,et al.  Unperturbed dimensions of polyacrylamide in salt-water-methanol mixtures , 1981 .

[79]  G. S. Misra,et al.  Determination of the molecular weight of polyacrylamide fractions by osmometry , 1979 .

[80]  R. Bird,et al.  Rheological Properties of Three Solutions. Part II. Relaxation and Growth of Shear and Normal Stresses , 1967 .

[81]  A. Tager,et al.  Non-Newtonian viscosity of concentrated polymer solutions , 1970 .

[82]  U. Singh,et al.  Peroxo salts as initiators of vinyl polymerization, 1. Effect of Ag(I) and Cu(II) on the polymerization of acrylamide initiated by peroxodisulfate ions , 1979 .

[83]  A. Gupta,et al.  Studies on the aqueous polymerization of acrylamide by the acidified potassium permanganate‐thioglycolic acid redox system , 1975 .

[84]  H. Narita,et al.  Studies on the polymerization of vinyl compounds in the presence of metal salts, 9. On the initiation mechanism of polymerization of acrylamide by ceric salt , 1974 .

[85]  M. Higuchi,et al.  Kinetic Aspects of the Alkaline Hydrolysis of Poly(acrylamide) , 1972 .

[86]  R. Bird,et al.  Three‐Constant Oldroyd Model for Viscoelastic Fluids , 1962 .

[87]  Tsuneyuki Sato,et al.  A study on long‐lived propagating polymer radicals of acrylamide derivatives at room temperature , 1979 .

[88]  M. M. Husain,et al.  Studies on aqueous polymerization of acrylamide. Potassium persulfate/2‐mercaptoethylamine hydrochloride redox system , 1978 .

[89]  W. Kulicke,et al.  Long‐term change in conformation of macromolecules in solution, 2. Poly(acrylamide‐co‐sodium acrylate)s , 1981 .

[90]  Hiroo Tanaka,et al.  Preparation of Polyvinylamine by the Hofmann Degradation of Polyacrylamide , 1976 .

[91]  J. Pearson Instability in Non-Newtonian Flow , 1976 .

[92]  S. Machi,et al.  Synthesis of high molecular weight polyacrylamide flocculant by radiation polymerization , 1976 .

[93]  Y. Kato,et al.  High‐speed aqueous gel‐permeation chromatography , 1978 .

[94]  K. Walters,et al.  Stress overshoot: Real and apparent , 1976 .

[95]  G. Muller,et al.  High molecular weight hydrolyzed polyacrylamides. III. Effect of temperature on chemical stability , 1980 .

[96]  J. S. Shukla,et al.  Aqueous polymerization of acrylamide , 1979 .

[97]  Shaul A. Aharoni Critical concentrations for intermolecular interpenetration and entanglements , 1978 .

[98]  Z. Ogumi,et al.  The initiation reaction of electro-initiated polymerization of acrylamide in the Kolbe electrolysis system. , 1976 .

[99]  W. P. Shyluk,et al.  Aging and loss of flocculation activity of aqueous polyacrylamide solutions , 1969 .

[100]  J. Klein,et al.  Zur Frage der Instabilität von Polyacrylamidlösungen , 1978 .

[101]  J. Schurz,et al.  Inwieweit sind Anlaufvorgänge in einem konventionellen Rotationsviskosimeter aussagekräffig? , 1972 .

[102]  P. Cukor,et al.  Aqueous GPC of Water Soluble Polymers by High Pressure Liquid Chromatography Using Glyceryl CPG Columns , 1976 .

[103]  E. H. Gleason,et al.  A radiotracer study of branch formation in polyacrylamide , 1959 .

[104]  J. Klein,et al.  Preparation and characterization of poly(acrylamide‐co‐acrylic acid) , 1978 .

[105]  F. Regnier,et al.  Glycerolpropylsilane bonded phases in the steric exclusion chromatography of biological macromolecules. , 1976, Journal of chromatographic science.

[106]  C. Wolff Molecular weight dependence of the relative viscosity of solutions of polymers at the critical concentration , 1977 .

[107]  J. Klein,et al.  Molecular weight determination of poly(acrylamide) and poly(acrylamide‐co‐sodium acrylate) , 1978 .

[108]  J. Klein,et al.  Zur Messung des Fließverhaltens von Polymerlösungen im Bereich hoher Scherbeanspruchung , 1967 .

[109]  J. White,et al.  Dynamics of viscoelastic fluids, melt fracture, and the rheology of fiber spinning , 1964 .

[110]  G. Vallet,et al.  Caracterisation physico-chimique de polyacrylamides utilises comme agents floculants—I. Etude en solution , 1976 .

[111]  A. Gupta,et al.  Studies on aqueous polymerization of acrylamide, 2. Potassium persulfate/2‐mercaptoethanol redox system , 1976 .

[112]  D. Misra,et al.  Aqueous polymerization of acrylamide initiated by acidic permanganate/thiourea redox system , 1973 .

[113]  Von W. Scholtan Molekulargewichtsbestimmung von Polyacrylamid mittels der Ultrazentrifuge , 1954 .

[114]  W. Stockmayer,et al.  Intrinsic viscosities and unperturbed dimensions of long chain molecules , 1963 .

[115]  A. S. Lodge,et al.  Rheological properties of concentrated polymer solutions II. A cone-and-plate and parallel-plate pressure distribution apparatus for determining normal stress differences in steady shear flow , 1964, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[116]  G. Meyerhoff Die viscosimetrische Molekulargewichtsbestimmung von Polymeren , 1961 .

[117]  J. Schurz,et al.  Rheologische Untersuchungen an Synovia und Synoviamodellen , 1979 .

[118]  Y. Jen,et al.  The polymerization of acrylamide with chlorate–sulfite initiator , 1958 .

[119]  Von W. Heitz,et al.  Gelchromatographie. 9. Mitt.: Polymethacrylatgele1 , 1970 .

[120]  A. Hamielec,et al.  Solution polymerization of acrylamide to high conversion , 1973 .

[121]  J. Klein,et al.  Rheologische Untersuchungen zur Struktur makromolekularer Lösungen , 1975 .

[122]  K. Ebert,et al.  Effects of mechanical stress on the reactivity of polymers: Shear degradation of polyacrylamide and dextran , 1979 .

[123]  P. Nayak,et al.  Polymerization of Acrylamide Initiated by Quinquevalent Vanadium-Cyclohexanone Redox System , 1977 .

[124]  Shin-ichi Ohta,et al.  Nonlinear viscoelasticity of polystyrene solutions. III. Stress development at the start of steady shear flow and an experimental check of some constitutive models , 1976 .

[125]  A. Silberberg,et al.  Temperature-dependence of light scattering and intrinsic viscosity of hydrogen bonding polymers , 1957 .

[126]  Von F. A. Henglein Die Auslösung und der Verlauf der Polymerisation des Acrylamids unter dem Einfluß von Ultraschallwellen , 1954 .

[127]  M. Hoffmann Die Verhakung der Fadenmolekle und ihr Einflu auf die Eigenschaften der Polymere , 1977 .

[128]  J. Klein,et al.  Peculiarities of polyacrylamide analysis by aqueous GPC , 1981 .

[129]  R. Porter,et al.  Non‐Newtonian Viscosity of Polymers , 1961 .

[130]  S. Onogi,et al.  Rheological properties of polymethyl methacrylate and polyvinyl acetate in the molten state , 1968 .

[131]  N. Onda,et al.  Gel permeation chromatography using controlled‐porosity glass. II. Polyacrylamide aqueous solutions , 1980 .

[132]  Z. Ogumi,et al.  An Application of Current-pulse Electrolysis to an Electro-initiated Polymerization of Acrylamide , 1976 .

[133]  D. Misra,et al.  Aqueous polymerization of acrylamide initiated by acidic potassium permanganate–ascorbic acid redox system , 1973 .

[134]  A. Gupta,et al.  Effect of some additions on the aqueous polymerization of acrylamide, initiated by permanganate-oxalic acid redox system , 1977 .

[135]  N. D. Waters,et al.  The effect of secondary flows in the use of a rheogoniometer , 1970 .

[136]  J. Schurz,et al.  Die Auswertung von Anlaufmessungen bei Newtonschen und elastoviskosen Flüssigkeiten , 1969 .

[137]  R. Porter,et al.  Shear viscosities of polyisobutene systems—A study of polymer entanglement , 1962 .

[138]  A. Rudin,et al.  Practical estimation of dilute solution parameters , 1973 .

[139]  N. Onda,et al.  Gel permeation chromatography using controlled‐porosity glass. I. Polyacrylamide–formamide solution , 1979 .

[140]  S. P. Rout,et al.  Mechanism of the polymerization of acrylamide initiated by the glycerol/Ce(IV) redox system , 1977 .

[141]  R. Darby,et al.  Prediction of the onset of extrudate distortion in polyethylenes from rheological data , 1976 .

[142]  Strukturrheologie von konzentrierten Lösungen vom Netzwerktyp , 1975 .