The distinguishing index of the Cartesian product of countable graphs

The distinguishing index D ′ ( G ) of a graph G is the least cardinal d such that G has an edge colouring with d colours that is preserved only by the trivial automorphism. We derive some bounds for this parameter for infinite graphs. In particular, we investigate the distinguishing index of the Cartesian product of countable graphs. Finally, we prove that D ʹ( K 2 ℵ 0 ) = 2 , where K 2 ℵ 0 is the infinite dimensional hypercube.

[1]  Wilfried Imrich,et al.  Distinguishing Infinite Graphs , 2007, Electron. J. Comb..

[2]  Thomas W. Tucker,et al.  Distinguishability of Infinite Groups and Graphs , 2012, Electron. J. Comb..

[3]  Monika Pilsniak,et al.  The distinguishing index of the Cartesian product of finite graphs , 2017, Ars Math. Contemp..

[4]  W. Imrich,et al.  Distinguishing Cartesian powers of graphs , 2006 .

[5]  Michael O. Albertson,et al.  Symmetry Breaking in Graphs , 1996, Electron. J. Comb..

[6]  Izak Broere,et al.  The Distinguishing Index of Infinite Graphs , 2015, Electron. J. Comb..

[7]  Wilfried Imrich,et al.  Endomorphism Breaking in Graphs , 2013, Electron. J. Comb..

[8]  Mark Pankov A Note on Automorphisms of the Infinite-Dimensional Hypercube Graph , 2012, Electron. J. Comb..

[9]  Xiangqian Zhou,et al.  Distinguishability of Locally Finite Trees , 2007, Electron. J. Comb..

[10]  V. Yegnanarayanan,et al.  On product graphs , 2012 .

[11]  Monika Pilsniak,et al.  Distinguishing graphs by edge-colourings , 2015, Eur. J. Comb..

[12]  Monika Pilsniak Edge motion and the distinguishing index , 2017, Theor. Comput. Sci..

[13]  Thomas W. Tucker,et al.  Distinguishing Maps , 2011, Electron. J. Comb..