P3HT:PCBM, Best Seller in Polymer Photovoltaic Research

In the fi eld of polymer-based photovoltaic cells, poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C₆₁ (PCBM) are, to date, the most-studied active materials around the world for the bulk-heterojunction structure. Various power-conversion effi ciencies are reported up to approximately 5%. This Research News article is focused on a survey of the tremendous literature published between 2002 and 2010 that exhibits solar cells based on blends of P3HT and PCBM.

[1]  André Moliton,et al.  Size effect on organic optoelectronics devices: Example of photovoltaic cell efficiency , 2008 .

[2]  Jean Manca,et al.  Phase diagram of P3HT/PCBM blends and its implication for the stability of morphology. , 2009, The journal of physical chemistry. B.

[3]  Carl M. Lampert,et al.  Editorial: Reporting solar cell efficiencies in Solar Energy Materials and Solar Cells , 2008 .

[4]  Jea-Gun Park,et al.  Effect of interface thickness on power conversion efficiency of polymer photovoltaic cells , 2009 .

[5]  Martin Brinkmann,et al.  Effect of Molecular Weight on the Structure and Morphology of Oriented Thin Films of Regioregular Poly(3‐hexylthiophene) Grown by Directional Epitaxial Solidification , 2007 .

[6]  Helmut Neugebauer,et al.  Flexible, long-lived, large-area, organic solar cells , 2007 .

[7]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[8]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[9]  M. Urien,et al.  Effect of the regioregularity of poly(3-hexylthiophene) on the performances of organic photovoltaic devices , 2008 .

[10]  Vishal Shrotriya,et al.  Efficient inverted polymer solar cells , 2006 .

[11]  C. Brabec,et al.  Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells , 2007 .

[12]  Garry Rumbles,et al.  Optimal negative electrodes for poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction photovoltaic devices , 2008 .

[13]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[14]  Harald Hoppe,et al.  Inverse relation between photocurrent and absorption layer thickness in polymer solar cells , 2007 .

[15]  Alex K.-Y. Jen,et al.  Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer , 2008 .

[16]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[17]  Yongfang Li,et al.  Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells. , 2010, Journal of the American Chemical Society.

[18]  Bumjoon J. Kim,et al.  The influence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance. , 2008, Journal of the American Chemical Society.

[19]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[20]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[21]  Yang Yang,et al.  Interface investigation and engineering – achieving high performance polymer photovoltaic devices , 2010 .

[22]  Jea-Gun Park,et al.  Effect of Metal-Reflection and Surface-Roughness Properties on Power-Conversion Efficiency for Polymer Photovoltaic Cells , 2009 .

[23]  Nasser N Peyghambarian,et al.  Fabrication of bulk heterojunction plastic solar cells by screen printing , 2001 .

[24]  Jean-Michel Nunzi,et al.  Development of air stable polymer solar cells using an inverted gold on top anode structure , 2005 .

[25]  Yong Cao,et al.  High-efficiency polymer photovoltaic devices from regioregular-poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester processed with oleic acid surfactant , 2007 .

[26]  Claudia N. Hoth,et al.  Printing highly efficient organic solar cells. , 2008, Nano letters.

[27]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[28]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[29]  Mario Leclerc,et al.  Processable Low-Bandgap Polymers for Photovoltaic Applications† , 2011 .

[30]  J. Bouclé,et al.  Nanoscale control of the network morphology of high efficiency polymer fullerene solar cells by the use of high material concentration in the liquid phase , 2010, Nanotechnology.

[31]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[32]  Christoph J. Brabec,et al.  Performance Analysis of Printed Bulk Heterojunction Solar Cells , 2006 .

[33]  Robert A. Street,et al.  Chemical impurity effects on transport in polymer transistors , 2007 .

[34]  Alex K.-Y. Jen,et al.  A Review on the Development of the Inverted Polymer Solar Cell Architecture , 2010 .

[35]  Christoph J. Brabec,et al.  On the effect of poly(3-hexylthiophene) regioregularity on inkjet printed organic solar cells , 2009 .

[36]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[37]  A. Pron,et al.  Effect of macromolecular parameters and processing conditions on supramolecular organisation, morphology and electrical transport properties in thin layers of regioregular poly(3-hexylthiophene) , 2006 .

[38]  Klaus Meerholz,et al.  Controlling Morphology in Polymer–Fullerene Mixtures , 2008 .

[39]  Daniel Moses,et al.  Method for increasing the photoconductive response in conjugated polymer/fullerene composites , 2006 .

[40]  Christoph J. Brabec,et al.  Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact , 2006 .

[41]  Klaus Meerholz,et al.  Morphology Control in Solution‐Processed Bulk‐Heterojunction Solar Cell Mixtures , 2009 .

[42]  A. Heeger,et al.  Semiconducting polymers: the Third Generation. , 2010, Chemical Society reviews.

[43]  Shijun Jia,et al.  Large-area organic photovoltaic module—Fabrication and performance , 2009 .

[44]  David L. Carroll,et al.  High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends , 2005 .

[45]  K. S. Narayan,et al.  Area dependent efficiency of organic solar cells , 2008 .

[46]  Christoph J. Brabec,et al.  Characterization of Organic Solar Cells: the Importance of Device Layout , 2007 .

[47]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[48]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[49]  Christoph J. Brabec,et al.  Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells , 2011 .

[50]  Gang Li,et al.  Accurate Measurement and Characterization of Organic Solar Cells , 2006 .

[51]  Frederik C. Krebs,et al.  Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide , 2009 .

[52]  Frédéric Laquai,et al.  The Impact of Polymer Regioregularity on Charge Transport and Efficiency of P3HT:PCBM Photovoltaic Devices , 2010 .

[53]  Jean M. J. Fréchet,et al.  Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes , 2005 .

[54]  Gang Li,et al.  “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3‐hexylthiophene) and Methanofullerenes , 2007 .

[55]  Christoph J. Brabec,et al.  Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors , 2002 .

[56]  Donal D. C. Bradley,et al.  Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process , 2008 .

[57]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[58]  Jarvist M. Frost,et al.  Binary Organic Photovoltaic Blends: A Simple Rationale for Optimum Compositions , 2008 .

[59]  Sang-Jin Moon,et al.  The importance of post-annealing process in the device performance of poly(3-hexylthiophene): Methanofullerene polymer solar cell , 2007 .

[60]  C. Brabec,et al.  Influence of Molecular Weight Distribution on the Gelation of P3HT and Its Impact on the Photovoltaic Performance , 2009 .

[61]  Vladimir Dyakonov,et al.  Polymer–fullerene bulk heterojunction solar cells , 2010, 1003.0359.

[62]  W. Jo,et al.  Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells , 2010 .

[63]  Martijn Lenes,et al.  Fullerene Bisadducts for Enhanced Open‐Circuit Voltages and Efficiencies in Polymer Solar Cells , 2008 .

[64]  Claudia N. Hoth,et al.  High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends , 2007 .

[65]  J. Fréchet,et al.  Enhancing the thermal stability of polythiophene:fullerene solar cells by decreasing effective polymer regioregularity. , 2006, Journal of the American Chemical Society.

[66]  Lionel Hirsch,et al.  Field-effect transistors based on poly(3-hexylthiophene): Effect of impurities , 2007 .

[67]  U. Asawapirom,et al.  Influence of crystallizable solvent on the morphology and performance of P3HT:PCBM bulk-heterojunction solar cells , 2010 .