Supersaturation-controlled microcrystallization and visualization analysis for serial femtosecond crystallography

[1]  Kwang-Hoon Kim,et al.  Construction and Commissioning of PAL-XFEL Facility , 2017 .

[2]  Cheolju Lee,et al.  Structural Basis of Novel Iron-Uptake Route and Reaction Intermediates in Ferritins from Gram-Negative Bacteria. , 2016, Journal of molecular biology.

[3]  Jaehyun Park,et al.  Current status of the CXI beamline at the PAL-XFEL , 2016 .

[4]  Bostjan Kobe,et al.  Protein crystal screening and characterization for serial femtosecond nanocrystallography , 2016, Scientific Reports.

[5]  Sébastien Boutet,et al.  Linac Coherent Light Source: The first five years , 2016 .

[6]  M. Perbandt,et al.  Reliably distinguishing protein nanocrystals from amorphous precipitate by means of depolarized dynamic light scattering , 2015 .

[7]  S. Boutet,et al.  Serial femtosecond crystallography of soluble proteins in lipidic cubic phase , 2015, IUCrJ.

[8]  Sébastien Boutet,et al.  A novel inert crystal delivery medium for serial femtosecond crystallography , 2015, IUCrJ.

[9]  A. Zouni,et al.  Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures , 2015, Structural dynamics.

[10]  Aaron S. Brewster,et al.  Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams , 2015, Acta crystallographica. Section D, Biological crystallography.

[11]  Sébastien Boutet,et al.  The Coherent X-ray Imaging instrument at the Linac Coherent Light Source , 2015, Journal of synchrotron radiation.

[12]  Garth J. Williams,et al.  Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein , 2014, Science.

[13]  Wei Liu,et al.  Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography , 2014, Nature Protocols.

[14]  P. Fromme,et al.  Microcrystallization techniques for serial femtosecond crystallography using photosystem II from Thermosynechococcus elongatus as a model system , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  Wei Liu,et al.  Femtosecond crystallography of membrane proteins in the lipidic cubic phase , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[16]  Anton Barty,et al.  Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser , 2014, Nature.

[17]  Anton Barty,et al.  Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data , 2014, Journal of applied crystallography.

[18]  C. Khosla,et al.  Use of transmission electron microscopy to identify nanocrystals of challenging protein targets , 2014, Proceedings of the National Academy of Sciences.

[19]  Anton Barty,et al.  Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography , 2014, Nature Communications.

[20]  Anton Barty,et al.  Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser , 2013, Science.

[21]  Sébastien Boutet,et al.  Nanoflow electrospinning serial femtosecond crystallography. , 2012, Acta crystallographica. Section D, Biological crystallography.

[22]  Keith Moffat,et al.  Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges. , 2012, Current opinion in structural biology.

[23]  U Weierstall,et al.  X-ray lasers for structural and dynamic biology , 2012, Reports on progress in physics. Physical Society.

[24]  Anton Barty,et al.  CrystFEL: a software suite for snapshot serial crystallography , 2012 .

[25]  Georg Weidenspointner,et al.  In vivo protein crystallization opens new routes in structural biology , 2012, Nature Methods.

[26]  Georg Weidenspointner,et al.  Time-resolved protein nanocrystallography using an X-ray free-electron laser , 2012, Optics express.

[27]  Nathaniel Echols,et al.  Accessing protein conformational ensembles using room-temperature X-ray crystallography , 2011, Proceedings of the National Academy of Sciences.

[28]  Lianghai Jin,et al.  Characteristic analysis of Otsu threshold and its applications , 2011, Pattern Recognit. Lett..

[29]  Owen Johnson,et al.  iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM , 2011, Acta crystallographica. Section D, Biological crystallography.

[30]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[31]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[32]  Ji-Xin Cheng,et al.  Selective detection of protein crystals by second harmonic microscopy. , 2008, Journal of the American Chemical Society.

[33]  J. Sussman,et al.  Control of the rate of evaporation in protein crystallization by the ‘microbatch under oil’ method , 2008, Journal of applied crystallography.

[34]  Naomi E Chayen,et al.  Protein crystallization: from purified protein to diffraction-quality crystal , 2008, Nature Methods.

[35]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[36]  Terese Bergfors,et al.  Seeds to crystals. , 2003, Journal of structural biology.

[37]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[38]  N. Chayen A novel technique to control the rate of vapour diffusion, giving larger protein crystals , 1997 .

[39]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  A. Alavi,et al.  Opportunities and Challenges , 1998, In Vitro Diagnostic Industry in China.

[41]  R. Judge,et al.  An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals. , 2005, Acta crystallographica. Section D, Biological crystallography.

[42]  Hojjat Adeli,et al.  The First Five Years , 1998, Integr. Comput. Aided Eng..

[43]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .