OPTIMAT BLADES-OPTIMAL AND RELIABLE USE OF COMPOSITE MATERIALS FOR WIND TURBINES -

Wind turbine technology provides maturing means of renewable energy production. Maintaining the wind turbine blades’ reliability in a demanding environment, and for ever increasing blade sizes, is an important challenge. For an adequate design, reliable and accurate design rules and detailed knowledge of the material behavior under various circumstances and load scenarios must be available. The OPTIMAT project, which started in January 2002, aims to help provide this knowledge. This paper introduces and outlines the OPTIMAT project. It describes the rationale behind the project, the organization of the most important tasks and it indicates the foreseen approach to arrive at the project’s ambitious goals.

[1]  Anindya Ghoshal,et al.  Structural health monitoring techniques for wind turbine blades , 2000 .

[2]  Gunner Chr. Larsen,et al.  Fundamentals for remote structural health monitoring of wind turbine blades - a preproject , 2002 .

[3]  Karl Schulte,et al.  Non-destructive testing of FRP by d.c. and a.c. electrical methods , 2001 .

[4]  A. M. van Wingerde,et al.  Alternative fatigue lifetime prediction formulations for variable amplitude loading , 2002 .

[5]  C. Kensche Environmental Effects of Gl-Ep Rotor Blades , 1993 .

[6]  Kenji Oguni,et al.  A Micromechanical failure model for unidirectional fiber reinforced composites , 2001 .

[7]  A. G. Dutton,et al.  Acoustic Emission Monitoring of Small Wind Turbine Blades , 2002 .

[8]  Douglas S. Cairns,et al.  SELECTION OF FIBERGLASS MATRIX RESINS FOR INCREASED TOUGHNESS AND ENVIRONMENTAL RESISTANCE IN WIND TURBINE BLADES , 2000 .

[9]  Herbert J. Sutherland,et al.  On the Fatigue Analysis of Wind Turbines , 1999 .

[10]  P. Vionis,et al.  Comparing Fatigue Strength From Full Scale Blade Tests With Coupon-Based Predictions , 2002 .

[11]  A. Lystrup,et al.  Fatigue of Materials and Components for Wind Turbine Rotor Blades , 1996 .

[12]  G. Winkel,et al.  Fatigue behaviour of fibreglass wind turbine blade material under variable amplitude loading , 1997 .

[13]  Ying Shan,et al.  Environmental fatigue behavior and life prediction of unidirectional glass–carbon/epoxy hybrid composites , 2001 .

[14]  T. Adam,et al.  Life prediction for fatigue of T800/5245 carbon-fibre composites: I. Constant-amplitude loading , 1994 .

[15]  Herbert J. Sutherland,et al.  Effects of Materials Parameters and Design Details on the Fatigue of Composite Materials for Wind Turbine Blades , 1999 .

[16]  John F. Mandell,et al.  DOE/MSU composite material fatigue database: Test methods, materials, and analysis , 1997 .

[17]  Ch.W. Kensche Method to Predict Fatigue Lifetimes of GFRP Wind Turbine Blades and Comparison with Experiments. , 1997 .

[18]  J. Whitney,et al.  Design and Fabrication of Tubular Specimens for Composite Characterization , 1972 .

[19]  A. A. Ten Have WISPER and WISPERX Final definition of two standardised fatigue loading sequences for wind turbine blades , 1992 .

[20]  Donald F. Adams,et al.  An experimental investigation of the biaxial strength of IM6/3501-6 carbon/epoxy cross-ply laminates using cruciform specimens , 2002 .

[21]  John F. Mandell,et al.  Spectrum Fatigue Lifetime and Residual Strength for Fiberglass Laminates , 2002 .

[22]  P. D. Soden,et al.  Biaxial test results for strength and deformation of a range of E-glass and carbon fibre reinforced composite laminates: failure exercise benchmark data , 2002 .

[23]  Douglas S. Cairns,et al.  Fatigue of Composite Materials and Substructures for Wind Turbine Blades , 2002 .

[24]  Woonbong Hwang,et al.  Failure of carbon/epoxy composite tubes under combined axial and torsional loading 1. Experimental results and prediction of biaxial strength by the use of neural networks , 1999 .