Metazoan MicroRNAs

[1]  David P. Bartel,et al.  A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain , 2018, Cell.

[2]  R. Kapur,et al.  The mirn23a and mirn23b microrna clusters are necessary for proper hematopoietic progenitor cell production and differentiation. , 2018, Experimental hematology.

[3]  K. Obrietan,et al.  Commentary: miR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock , 2018, Journal of neurology & neuromedicine.

[4]  Anton J. Enright,et al.  MicroRNA degradation by a conserved target RNA regulates animal behavior , 2018, Nature Structural & Molecular Biology.

[5]  Michael T. McManus,et al.  Dual Strategies for Argonaute2-Mediated Biogenesis of Erythroid miRNAs Underlie Conserved Requirements for Slicing in Mammals. , 2018, Molecular cell.

[6]  Hongyang Wang,et al.  Dual regulation of HMGB1 by combined JNK1/2–ATF2 axis with miR‐200 family in nonalcoholic steatohepatitis in mice , 2018, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  Chirlmin Joo,et al.  Helix‐7 in Argonaute2 shapes the microRNA seed region for rapid target recognition , 2018, The EMBO journal.

[8]  Duonan Yu,et al.  Activating and sustaining c-Myc by depletion of miR-144/451 gene locus contributes to B-lymphomagenesis , 2017, Oncogene.

[9]  C. Zou,et al.  mir-67 regulates P. aeruginosa avoidance behavior in C. elegans. , 2017, Biochemical and biophysical research communications.

[10]  L. Cangiano,et al.  MiR-211 is essential for adult cone photoreceptor maintenance and visual function , 2017, Scientific Reports.

[11]  William M. Lee,et al.  miRNA-122 Protects Mice and Human Hepatocytes from Acetaminophen Toxicity by Regulating Cytochrome P450 Family 1 Subfamily A Member 2 and Family 2 Subfamily E Member 1 Expression. , 2017, The American journal of pathology.

[12]  M. N. Poy,et al.  microRNA-184 Induces a Commitment Switch to Epidermal Differentiation , 2017, Stem cell reports.

[13]  A. Brunner,et al.  Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling , 2017, Nature Communications.

[14]  A. Shalev,et al.  miR-204 Controls Glucagon-Like Peptide 1 Receptor Expression and Agonist Function , 2017, Diabetes.

[15]  R. Blelloch,et al.  The eutheria-specific miR-290 cluster modulates placental growth and maternal-fetal transport , 2017, Development.

[16]  Vikram Agarwal,et al.  Predicting microRNA targeting efficacy in Drosophila , 2017, Genome Biology.

[17]  A. Niehoff,et al.  miR-322 stabilizes MEK1 expression to inhibit RAF/MEK/ERK pathway activation in cartilage , 2017, Development.

[18]  Carmen Birchmeier,et al.  Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function , 2017, Science.

[19]  Z. Qiu,et al.  Mir505–3p regulates axonal development via inhibiting the autophagy pathway by targeting Atg12 , 2017, Autophagy.

[20]  Zhaoyuan Liu,et al.  Conditional knockout of microRNA-31 promotes the development of colitis associated cancer. , 2017, Biochemical and biophysical research communications.

[21]  Michael T. McManus,et al.  miR-205 is a critical regulator of lacrimal gland development. , 2017, Developmental biology.

[22]  E. Prochownik,et al.  MicroRNA-148a deficiency promotes hepatic lipid metabolism and hepatocarcinogenesis in mice , 2017, Cell Death & Disease.

[23]  Julia C. Engelmann,et al.  Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA‐guided gene silencing in vivo , 2017, The EMBO journal.

[24]  I. Papangeli,et al.  A PPARγ-dependent miR-424/503-CD40 axis regulates inflammation mediated angiogenesis , 2017, Scientific Reports.

[25]  Xue-Bi Cai,et al.  miR-183/96 plays a pivotal regulatory role in mouse photoreceptor maturation and maintenance , 2017, Proceedings of the National Academy of Sciences.

[26]  P. Baldi,et al.  Mir-132/212 is required for maturation of binocular matching of orientation preference and depth perception , 2017, Nature Communications.

[27]  T. Golub,et al.  The microRNA miR-31 inhibits CD8+ T cell function in chronic viral infection , 2017, Nature Immunology.

[28]  I. Amit,et al.  MicroRNA‐142 controls thymocyte proliferation , 2017, European journal of immunology.

[29]  Thomas D. Schmittgen,et al.  miR-216 and miR-217 expression is reduced in transgenic mouse models of pancreatic adenocarcinoma, knockout of miR-216/miR-217 host gene is embryonic lethal , 2017, Functional & Integrative Genomics.

[30]  G. Eichele,et al.  Genetic background-dependent effects of murine micro RNAs on circadian clock function , 2017, PloS one.

[31]  Henning Urlaub,et al.  A Compendium of RNA-Binding Proteins that Regulate MicroRNA Biogenesis. , 2017, Molecular cell.

[32]  E. Olson,et al.  Regulation of intraocular pressure by microRNA cluster miR-143/145 , 2017, Scientific Reports.

[33]  A. Siepel,et al.  Deep experimental profiling of microRNA diversity, deployment, and evolution across the Drosophila genus , 2017, bioRxiv.

[34]  D. Richter,et al.  A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals , 2017, Current Biology.

[35]  Charles E. Vejnar,et al.  MicroRNAs Establish Uniform Traits during the Architecture of Vertebrate Embryos. , 2017, Developmental cell.

[36]  E. Bongarzone,et al.  miR-219 Cooperates with miR-338 in Myelination and Promotes Myelin Repair in the CNS. , 2017, Developmental cell.

[37]  Daniel Birnbaum,et al.  miR-424(322)/503 is a breast cancer tumor suppressor whose loss promotes resistance to chemotherapy. , 2017, Genes & development.

[38]  Daihiko Hakuno,et al.  MicroRNA-33 Controls Adaptive Fibrotic Response in the Remodeling Heart by Preserving Lipid Raft Cholesterol , 2017, Circulation research.

[39]  M. Stoffel,et al.  Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility , 2017, The Journal of clinical investigation.

[40]  Yan Jin,et al.  miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice , 2017, Scientific Reports.

[41]  Susan M. Schlenner,et al.  Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice , 2017, Cellular and Molecular Life Sciences.

[42]  A. Mildner,et al.  Erythrocyte survival is controlled by microRNA-142 , 2016, Haematologica.

[43]  Tuo Li,et al.  An Argonaute phosphorylation cycle promotes microRNA-mediated silencing , 2016, Nature.

[44]  J. J. Westmoreland,et al.  Thalamic miR-338-3p mediates auditory thalamocortical disruption and its late onset in models of 22q11.2 microdeletion , 2016, Nature Medicine.

[45]  Li Ma,et al.  Ablation of miR-10b Suppresses Oncogene-Induced Mammary Tumorigenesis and Metastasis and Reactivates Tumor-Suppressive Pathways. , 2016, Cancer research.

[46]  Chen-feng Qi,et al.  Reprogramming macrophage orientation by microRNA 146b targeting transcription factor IRF5 , 2016, EBioMedicine.

[47]  V. Ambros,et al.  A microRNA family exerts maternal control on sex determination in C. elegans , 2016, bioRxiv.

[48]  Daehyun Baek,et al.  General rules for functional microRNA targeting , 2016, Nature Genetics.

[49]  D. Gerlich,et al.  MicroRNA‐34/449 controls mitotic spindle orientation during mammalian cortex development , 2016, The EMBO journal.

[50]  Vikram Agarwal,et al.  Impact of MicroRNA Levels, Target-Site Complementarity, and Cooperativity on Competing Endogenous RNA-Regulated Gene Expression , 2016, Molecular cell.

[51]  Helen Zhang,et al.  The mirn23a microRNA cluster antagonizes B cell development , 2016, Journal of leukocyte biology.

[52]  I. Dozmorov,et al.  MicroRNA-205 Maintains T Cell Development following Stress by Regulating Forkhead Box N1 and Selected Chemokines* , 2016, The Journal of Biological Chemistry.

[53]  Kui Li,et al.  Adipocyte miR-200b/a/429 ablation in mice leads to high-fat-diet-induced obesity , 2016, Oncotarget.

[54]  M. Zimmer,et al.  Neuron type-specific miRNA represses two broadly expressed genes to modulate an avoidance behavior in C. elegans , 2016, Genes & development.

[55]  Qi-jing Li,et al.  The MicroRNA miR-191 Supports T Cell Survival Following Common γ Chain Signaling* , 2016, The Journal of Biological Chemistry.

[56]  Dayong Wang,et al.  A mir-231-Regulated Protection Mechanism against the Toxicity of Graphene Oxide in Nematode Caenorhabditis elegans , 2016, Scientific Reports.

[57]  K. Ghoshal,et al.  MicroRNA‐122 regulates polyploidization in the murine liver , 2016, Hepatology.

[58]  Leo D. Wang,et al.  Developmental regulation of myeloerythroid progenitor function by the Lin28b–let-7–Hmga2 axis , 2016, The Journal of experimental medicine.

[59]  Yun Liu,et al.  miR-182 Regulates Metabolic Homeostasis by Modulating Glucose Utilization in Muscle. , 2016, Cell reports.

[60]  L. Harries,et al.  The DDX6–4E-T interaction mediates translational repression and P-body assembly , 2016, Nucleic acids research.

[61]  K. Lam,et al.  Loss of miR‐182 affects B‐cell extrafollicular antibody response , 2016, Immunology.

[62]  J. Ryan,et al.  IL-10–Induced miR-155 Targets SOCS1 To Enhance IgE-Mediated Mast Cell Function , 2016, The Journal of Immunology.

[63]  Michael T. McManus,et al.  MicroRNAs 24 and 27 Suppress Allergic Inflammation and Target a Network of Regulators of T Helper 2 Cell-Associated Cytokine Production. , 2016, Immunity.

[64]  Shunbin Xu,et al.  Inactivation of the miR-183/96/182 Cluster Decreases the Severity of Pseudomonas aeruginosa-Induced Keratitis , 2016, Investigative ophthalmology & visual science.

[65]  Jianwen Liu,et al.  Targeted deletion of miR‐139‐5p activates MAPK, NF‐κB and STAT3 signaling and promotes intestinal inflammation and colorectal cancer , 2016, The FEBS journal.

[66]  V. Cestari,et al.  Effects of lack of microRNA-34 on the neural circuitry underlying the stress response and anxiety , 2016, Neuropharmacology.

[67]  Hao Zhu,et al.  Abstract PR07: Precise let-7 expression levels balance organ regeneration against tumor suppression , 2016 .

[68]  B. Zhu,et al.  MicroRNA-23a Curbs Necrosis during Early T Cell Activation by Enforcing Intracellular Reactive Oxygen Species Equilibrium. , 2016, Immunity.

[69]  V. Kim,et al.  Re-evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis , 2016, Proceedings of the National Academy of Sciences.

[70]  E. Morii,et al.  Deficiency in WT1-targeting microRNA-125a leads to myeloid malignancies and urogenital abnormalities , 2016, Oncogene.

[71]  J. Cavaille,et al.  Deletion of the miR-379/miR-410 gene cluster at the imprinted Dlk1-Dio3 locus enhances anxiety-related behaviour. , 2016, Human molecular genetics.

[72]  J. Arthur,et al.  Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome , 2016, Learning & memory.

[73]  Bruno Amati,et al.  Degradation dynamics of microRNAs revealed by a novel pulse-chase approach , 2016, Genome research.

[74]  John J Rossi,et al.  RNA Interference (RNAi)-Based Therapeutics: Delivering on the Promise? , 2016, Annual review of pharmacology and toxicology.

[75]  Shawn P. Driscoll,et al.  Loss of motoneuron-specific microRNA-218 causes systemic neuromuscular failure , 2015, Science.

[76]  E. Hovig,et al.  A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome. , 2015, Annual review of genetics.

[77]  Jianwen Liu,et al.  The loss of MiR-139-5p promotes colitis-associated tumorigenesis by mediating PI3K/AKT/Wnt signaling. , 2015, The international journal of biochemistry & cell biology.

[78]  Justin J. Cassidy,et al.  Differential Masking of Natural Genetic Variation by miR-9a in Drosophila , 2015, Genetics.

[79]  Erin M. Wissink,et al.  miR-150 Regulates Differentiation and Cytolytic Effector Function in CD8+ T cells , 2015, Scientific Reports.

[80]  D. Holtzman,et al.  microRNA-33 Regulates ApoE Lipidation and Amyloid-β Metabolism in the Brain , 2015, The Journal of Neuroscience.

[81]  W. Filipowicz,et al.  Structure of a Human 4E-T/DDX6/CNOT1 Complex Reveals the Different Interplay of DDX6-Binding Proteins with the CCR4-NOT Complex. , 2015, Cell reports.

[82]  Susan M. Schlenner,et al.  The microRNA-29 Family Dictates the Balance Between Homeostatic and Pathological Glucose Handling in Diabetes and Obesity , 2015, Diabetes.

[83]  Y. Egashira,et al.  miR-199a Links MeCP2 with mTOR Signaling and Its Dysregulation Leads to Rett Syndrome Phenotypes. , 2015, Cell reports.

[84]  V. Sexl,et al.  MicroRNA-15/16 Antagonizes Myb To Control NK Cell Maturation , 2015, The Journal of Immunology.

[85]  I. MacRae,et al.  Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets , 2015, eLife.

[86]  C. Heeschen,et al.  MiR-93 Controls Adiposity via Inhibition of Sirt7 and Tbx3. , 2015, Cell reports.

[87]  D. Bartel,et al.  The Menu of Features that Define Primary MicroRNAs and Enable De Novo Design of MicroRNA Genes. , 2015, Molecular cell.

[88]  Jiayu Wen,et al.  Analysis of Nearly One Thousand Mammalian Mirtrons Reveals Novel Features of Dicer Substrates , 2015, PLoS Comput. Biol..

[89]  Carlo M. Croce,et al.  miR-15b/16-2 deletion promotes B-cell malignancies , 2015, Proceedings of the National Academy of Sciences.

[90]  D. Bartel,et al.  Independent regulation of vertebral number and vertebral identity by microRNA-196 paralogs , 2015, Proceedings of the National Academy of Sciences.

[91]  R. Gregory,et al.  A Biogenesis Step Upstream of Microprocessor Controls miR-17∼92 Expression , 2015, Cell.

[92]  J. Fish,et al.  miR-302 Is Required for Timing of Neural Differentiation, Neural Tube Closure, and Embryonic Viability , 2015, Cell reports.

[93]  R. Yi,et al.  MicroRNA-203 represses selection and expansion of oncogenic Hras transformed tumor initiating cells , 2015, eLife.

[94]  Stefan L Ameres,et al.  Selective Suppression of the Splicing-Mediated MicroRNA Pathway by the Terminal Uridyltransferase Tailor. , 2015, Molecular cell.

[95]  Veronika A. Herzog,et al.  Uridylation of RNA Hairpins by Tailor Confines the Emergence of MicroRNAs in Drosophila , 2015, Molecular cell.

[96]  Hong Wang,et al.  MicroRNA-31 negatively regulates peripherally derived regulatory T-cell generation by repressing retinoic acid-inducible protein 3 , 2015, Nature Communications.

[97]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[98]  M. Moore,et al.  Single-Molecule Imaging Reveals that Argonaute Reshapes the Binding Properties of Its Nucleic Acid Guides , 2015, Cell.

[99]  I. MacRae,et al.  A Dynamic Search Process Underlies MicroRNA Targeting , 2015, Cell.

[100]  T. Braun,et al.  Mature T cell responses are controlled by microRNA-142. , 2015, The Journal of clinical investigation.

[101]  Yuheng Lu,et al.  A Single miRNA-mRNA Interaction Affects the Immune Response in a Context- and Cell-Type-Specific Manner. , 2015, Immunity.

[102]  S. Hébert,et al.  Memory formation and retention are affected in adult miR-132/212 knockout mice , 2015, Behavioural Brain Research.

[103]  Sang-Joon Park,et al.  Osteoporotic bone of miR-150-deficient mice: Possibly due to low serum OPG-mediated osteoclast activation , 2015, Bone reports.

[104]  Hiroshi I. Suzuki,et al.  Small-RNA asymmetry is directly driven by mammalian Argonautes , 2015, Nature Structural &Molecular Biology.

[105]  M. Surani,et al.  Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration , 2015, PloS one.

[106]  E. Izaurralde,et al.  Towards a molecular understanding of microRNA-mediated gene silencing , 2015, Nature Reviews Genetics.

[107]  V. Ambros,et al.  Robust Distal Tip Cell Pathfinding in the Face of Temperature Stress Is Ensured by Two Conserved microRNAS in Caenorhabditis elegans , 2015, Genetics.

[108]  C. Chen,et al.  Altered lymphopoiesis and immunodeficiency in miR-142 null mice. , 2015, Blood.

[109]  Wade H. Dunham,et al.  The eIF4E-Binding Protein 4E-T Is a Component of the mRNA Decay Machinery that Bridges the 5' and 3' Termini of Target mRNAs. , 2015, Cell reports.

[110]  V. Kim,et al.  Functional Anatomy of the Human Microprocessor , 2015, Cell.

[111]  R. Ventura,et al.  Neurobehavioral Alterations in a Genetic Murine Model of Feingold Syndrome 2 , 2015, Behavior genetics.

[112]  Zhongxin Lu,et al.  Modulation of tumorigenesis by the pro-inflammatory microRNA miR-301a in mouse models of lung cancer and colorectal cancer , 2015, Cell Discovery.

[113]  M. Weirauch,et al.  MiR-125a targets effector programs to stabilize Treg-mediated immune homeostasis , 2015, Nature Communications.

[114]  Joana A. Vidigal,et al.  An allelic series of miR-17~92 mutant mice uncovers functional specialization and cooperation among members of a miRNA polycistron , 2015, Nature Genetics.

[115]  Monika S. Kowalczyk,et al.  The MicroRNA-132 and MicroRNA-212 Cluster Regulates Hematopoietic Stem Cell Maintenance and Survival with Age by Buffering FOXO3 Expression. , 2015, Immunity.

[116]  Debora S. Marks,et al.  MicroRNA control of protein expression noise , 2015, Science.

[117]  C. Mason,et al.  miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. , 2015, Blood.

[118]  Michael B. Stadler,et al.  Potent degradation of neuronal miRNAs induced by highly complementary targets , 2015, EMBO reports.

[119]  Xiang-hang Luo,et al.  MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. , 2015, The Journal of clinical investigation.

[120]  Sebastian D. Mackowiak,et al.  Specific microRNAs Regulate Heat Stress Responses in Caenorhabditis elegans , 2015, Scientific Reports.

[121]  Daniel G. Anderson,et al.  Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron–sulfur deficiency and pulmonary hypertension , 2015, EMBO molecular medicine.

[122]  A. Dent,et al.  MicroRNA 21 Is a Homeostatic Regulator of Macrophage Polarization and Prevents Prostaglandin E2-Mediated M2 Generation , 2015, PloS one.

[123]  M. Stoffel,et al.  Modulation of microRNA-375 expression alters voltage-gated Na+ channel properties and exocytosis in insulin-secreting cells , 2015, Acta physiologica.

[124]  H. Grosshans,et al.  The let-7 microRNA directs vulval development through a single target. , 2015, Developmental cell.

[125]  E. Miska,et al.  Ancient and Novel Small RNA Pathways Compensate for the Loss of piRNAs in Multiple Independent Nematode Lineages , 2015, PLoS biology.

[126]  R. D'Hooge,et al.  Deficiency of the miR-29a/b-1 cluster leads to ataxic features and cerebellar alterations in mice , 2015, Neurobiology of Disease.

[127]  Viktoriya D. Nikolova,et al.  Disruption of the MicroRNA 137 Primary Transcript Results in Early Embryonic Lethality in Mice , 2015, Biological Psychiatry.

[128]  S. Cohen,et al.  Systematic study of Drosophila microRNA functions using a collection of targeted knockout mutations. , 2014, Developmental cell.

[129]  K. Chowdhury,et al.  Vascular importance of the miR-212/132 cluster. , 2014, European heart journal.

[130]  R. A. Gomez,et al.  Deletion of the miR-143/145 cluster leads to hydronephrosis in mice. , 2014, The American journal of pathology.

[131]  J. Neilson,et al.  Loss of MicroRNA-106b-25 Cluster Promotes Atrial Fibrillation by Enhancing Ryanodine Receptor Type-2 Expression and Calcium Release , 2014, Circulation. Arrhythmia and electrophysiology.

[132]  T. Lion,et al.  Identification of RISC-Associated Adenoviral MicroRNAs, a Subset of Their Direct Targets, and Global Changes in the Targetome upon Lytic Adenovirus 5 Infection , 2014, Journal of Virology.

[133]  L. Hennighausen,et al.  The STAT5-regulated miR-193b locus restrains mammary stem and progenitor cell activity and alveolar differentiation. , 2014, Developmental biology.

[134]  Yijie Zheng,et al.  miR-15a/16 Regulates Macrophage Phagocytosis after Bacterial Infection , 2014, The Journal of Immunology.

[135]  I. MacRae,et al.  Structural basis for microRNA targeting , 2014, Science.

[136]  J. Cavaille,et al.  The miR‐379/miR‐410 cluster at the imprinted Dlk1‐Dio3 domain controls neonatal metabolic adaptation , 2014, The EMBO journal.

[137]  Jeffrey K. Mito,et al.  MicroRNA-182 drives metastasis of primary sarcomas by targeting multiple genes. , 2014, The Journal of clinical investigation.

[138]  P. Sethupathy,et al.  MicroRNA-223 coordinates cholesterol homeostasis , 2014, Proceedings of the National Academy of Sciences.

[139]  Daehyun Baek,et al.  mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. , 2014, Molecular cell.

[140]  V. Kim,et al.  Regulation of microRNA biogenesis , 2014, Nature Reviews Molecular Cell Biology.

[141]  Wei Yan,et al.  Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis , 2014, Proceedings of the National Academy of Sciences.

[142]  R. Brandes,et al.  Phenotypic Characterization of miR-92a−/− Mice Reveals an Important Function of miR-92a in Skeletal Development , 2014, PloS one.

[143]  Marcel Schilling,et al.  Unambiguous identification of miRNA:target site interactions by different types of ligation reactions. , 2014, Molecular cell.

[144]  Vikram Agarwal,et al.  Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. , 2014, Molecular cell.

[145]  Lin He,et al.  miR-34a Blocks Osteoporosis and Bone Metastasis by Inhibiting Osteoclastogenesis and Tgif2 , 2014, Nature.

[146]  Lin He,et al.  miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110 , 2014, Nature.

[147]  M. Zavolan,et al.  MicroRNA-7a regulates pancreatic β cell function. , 2014, The Journal of clinical investigation.

[148]  A. Mildner,et al.  miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis , 2014, eLife.

[149]  Victor V. Solovyev,et al.  The Ctenophore Genome and the Evolutionary Origins of Neural Systems , 2014, Nature.

[150]  Phillip D Zamore,et al.  Cnidarian microRNAs frequently regulate targets by cleavage , 2014, Genome research.

[151]  D. Pe’er,et al.  The miR-424(322)/503 cluster orchestrates remodeling of the epithelium in the involuting mammary gland , 2014, Genes & development.

[152]  P. Saas,et al.  Faculty Opinions recommendation of The miR-126-VEGFR2 axis controls the innate response to pathogen-associated nucleic acids. , 2014 .

[153]  F. Kiessling,et al.  MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1 , 2014, Nature Medicine.

[154]  Phillip A Sharp,et al.  Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. , 2014, Molecular cell.

[155]  F. Camargo,et al.  Hippo Signaling Regulates Microprocessor and Links Cell-Density-Dependent miRNA Biogenesis to Cancer , 2014, Cell.

[156]  Phillip A. Sharp,et al.  Argonaute-Bound Small RNAs from Promoter-Proximal RNA Polymerase II , 2014, Cell.

[157]  R. Sachidanandam,et al.  Multifaceted roles of miR-1s in repressing the fetal gene program in the heart , 2014, Cell Research.

[158]  D. Bartel,et al.  Poly(A)-tail profiling reveals an embryonic switch in translational control , 2014, Nature.

[159]  Tetsuo Yoshida,et al.  miR-142-3p enhances FcεRI-mediated degranulation in mast cells. , 2014, Biochemical and biophysical research communications.

[160]  M. Zavolan,et al.  Argonaute2 Mediates Compensatory Expansion of the Pancreatic β Cell , 2014, Cell metabolism.

[161]  Nara Lee,et al.  Mammalian 5′-Capped MicroRNA Precursors that Generate a Single MicroRNA , 2013, Cell.

[162]  N. Standart,et al.  Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing , 2013, Nucleic acids research.

[163]  Joshua L Plotkin,et al.  MicroRNA-128 Governs Neuronal Excitability and Motor Behavior in Mice , 2013, Science.

[164]  Takeshi Kimura,et al.  MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice , 2013, Nature Communications.

[165]  Yonggan Wu,et al.  Lower and upper stem–single-stranded RNA junctions together determine the Drosha cleavage site , 2013, Proceedings of the National Academy of Sciences.

[166]  Š. Vaňáčová,et al.  Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs , 2013, RNA.

[167]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[168]  P. D. de Jong,et al.  microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart , 2013, eLife.

[169]  Tsutomu Suzuki,et al.  Poly(A)-specific ribonuclease mediates 3'-end trimming of Argonaute2-cleaved precursor microRNAs. , 2013, Cell reports.

[170]  Ju-Seog Lee,et al.  LIN28B promotes growth and tumorigenesis of the intestinal epithelium via Let-7 , 2013, Genes & development.

[171]  Michael T. McManus,et al.  Partially Penetrant Postnatal Lethality of an Epithelial Specific MicroRNA in a Mouse Knockout , 2013, PloS one.

[172]  A. Krogh,et al.  Loss of miR-10a Activates Lpo and Collaborates with Activated Wnt Signaling in Inducing Intestinal Neoplasia in Female Mice , 2013, PLoS genetics.

[173]  J. Couchman,et al.  An Epidermal MicroRNA Regulates Neuronal Migration Through Control of the Cellular Glycosylation State , 2013, Science.

[174]  Tim F. Rayner,et al.  MiR-210 Is Induced by Oct-2, Regulates B Cells, and Inhibits Autoantibody Production , 2013, The Journal of Immunology.

[175]  T. Boettger,et al.  miR-1/133a Clusters Cooperatively Specify the Cardiomyogenic Lineage by Adjustment of Myocardin Levels during Embryonic Heart Development , 2013, PLoS genetics.

[176]  E. Lai,et al.  MicroRNA-205 Controls Neonatal Expansion of Skin Stem Cells by Modulating the PI3K Pathway , 2013, Nature Cell Biology.

[177]  Michael T. McManus,et al.  The Pitx2:miR-200c/141:noggin pathway regulates Bmp signaling and ameloblast differentiation , 2013, Development.

[178]  M. Ikawa,et al.  MiR-200b and miR-429 Function in Mouse Ovulation and Are Essential for Female Fertility , 2013, Science.

[179]  M. Rudnicki,et al.  miR-133a Regulates Adipocyte Browning In Vivo , 2013, PLoS genetics.

[180]  Daehyun Baek,et al.  Selective degradation of host MicroRNAs by an intergenic HCMV noncoding RNA accelerates virus production. , 2013, Cell host & microbe.

[181]  Selene L. Fernandez-Valverde,et al.  MicroRNAs-140-5p/140-3p Modulate Leydig Cell Numbers in the Developing Mouse Testis1 , 2013, Biology of reproduction.

[182]  Adam Williams,et al.  The microRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis. , 2013, Immunity.

[183]  Ryan M. O’Connell,et al.  MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice , 2013, eLife.

[184]  J. Reményi,et al.  miR-132/212 Knockout Mice Reveal Roles for These miRNAs in Regulating Cortical Synaptic Transmission and Plasticity , 2013, PloS one.

[185]  Da-Zhi Wang,et al.  MicroRNA-22 Regulates Cardiac Hypertrophy and Remodeling in Response to Stress , 2013, Circulation research.

[186]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.

[187]  M. Ballmaier,et al.  Critical role for miR-181a/b-1 in agonist selection of invariant natural killer T cells , 2013, Proceedings of the National Academy of Sciences.

[188]  R. Gregory,et al.  A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway , 2013, Nature.

[189]  John A. Besse,et al.  Targeted Ablation of miR-21 Decreases Murine Eosinophil Progenitor Cell Growth , 2013, PloS one.

[190]  E. Abraham,et al.  miR‐145 regulates myofibroblast differentiation and lung fibrosis , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[191]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[192]  J. Kjems,et al.  Natural RNA circles function as efficient microRNA sponges , 2013, Nature.

[193]  John A. Besse,et al.  miR-223 Deficiency Increases Eosinophil Progenitor Proliferation , 2013, The Journal of Immunology.

[194]  I. Amit,et al.  Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis. , 2013, Blood.

[195]  David P. Bartel,et al.  Beyond Secondary Structure: Primary-Sequence Determinants License Pri-miRNA Hairpins for Processing , 2013, Cell.

[196]  Peter E. Larsen,et al.  Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration , 2013, Proceedings of the National Academy of Sciences.

[197]  Jay Shendure,et al.  Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. , 2012, Molecular cell.

[198]  C. Fabián Flores-Jasso,et al.  Argonaute Divides Its RNA Guide into Domains with Distinct Functions and RNA-Binding Properties , 2012, Cell.

[199]  Yue Zhang,et al.  The Loop Position of shRNAs and Pre-miRNAs Is Critical for the Accuracy of Dicer Processing In Vivo , 2012, Cell.

[200]  Hyeshik Chang,et al.  Mono-Uridylation of Pre-MicroRNA as a Key Step in the Biogenesis of Group II let-7 MicroRNAs , 2012, Cell.

[201]  E. Wagner,et al.  MicroRNAs in Amoebozoa: deep sequencing of the small RNA population in the social amoeba Dictyostelium discoideum reveals developmentally regulated microRNAs. , 2012, RNA.

[202]  Chad E. Grueter,et al.  Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378* , 2012, Proceedings of the National Academy of Sciences.

[203]  C. Croce,et al.  miR-29ab1 Deficiency Identifies a Negative Feedback Loop Controlling Th1 Bias That Is Dysregulated in Multiple Sclerosis , 2012, The Journal of Immunology.

[204]  S. Schaffert,et al.  Modulating the Strength and Threshold of NOTCH Oncogenic Signals by mir-181a-1/b-1 , 2012, PLoS genetics.

[205]  W. Filipowicz,et al.  Kinetic analysis reveals successive steps leading to miRNA‐mediated silencing in mammalian cells , 2012, EMBO reports.

[206]  Hsien-Da Huang,et al.  MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. , 2012, The Journal of clinical investigation.

[207]  M. Caligiuri,et al.  Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. , 2012, The Journal of clinical investigation.

[208]  G. Hannon,et al.  The Structure of Human Argonaute-2 in Complex with miR-20a , 2012, Cell.

[209]  S. Safe,et al.  A Novel Regulator of Macrophage Activation: miR-223 in Obesity-Associated Adipose Tissue Inflammation , 2012, Circulation.

[210]  Anton J. Enright,et al.  Targeted Deletion of MicroRNA-22 Promotes Stress-Induced Cardiac Dilation and Contractile Dysfunction , 2012, Circulation.

[211]  E. Olson,et al.  microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. , 2012, The Journal of clinical investigation.

[212]  I. MacRae,et al.  The Crystal Structure of Human Argonaute2 , 2012, Science.

[213]  D. Bartel,et al.  Structure of yeast Argonaute with guide RNA , 2012, Nature.

[214]  Michael T. McManus,et al.  A resource for the conditional ablation of microRNAs in the mouse. , 2012, Cell reports.

[215]  A. Giraldez,et al.  Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish , 2012, Science.

[216]  R. Green,et al.  miRNA-Mediated Gene Silencing by Translational Repression Followed by mRNA Deadenylation and Decay , 2012, Science.

[217]  A. Pasquinelli,et al.  Auto-regulation of miRNA biogenesis by let-7 and Argonaute , 2012, Nature.

[218]  E. Olson,et al.  MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca²⁺ overload and cell death. , 2012, The Journal of clinical investigation.

[219]  Margaret S. Ebert,et al.  Roles for MicroRNAs in Conferring Robustness to Biological Processes , 2012, Cell.

[220]  H. Horvitz,et al.  The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. , 2012, Cell metabolism.

[221]  J. Mendell,et al.  MicroRNAs in Stress Signaling and Human Disease , 2012, Cell.

[222]  Q. Mi,et al.  MicroRNA miR-150 Is Involved in Vα14 Invariant NKT Cell Development and Function , 2012, The Journal of Immunology.

[223]  S. Pfeffer,et al.  Degradation of Cellular miR-27 by a Novel, Highly Abundant Viral Transcript Is Important for Efficient Virus Replication In Vivo , 2012, PLoS pathogens.

[224]  D. Tollervey,et al.  Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target , 2011, Proceedings of the National Academy of Sciences.

[225]  Aikaterini S. Papadopoulou,et al.  The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-α receptor , 2011, Nature Immunology.

[226]  L. Lanier,et al.  miR-150 regulates the development of NK and iNKT cells , 2011, The Journal of experimental medicine.

[227]  R. Gregory,et al.  Molecular Basis for Interaction of let-7 MicroRNAs with Lin28 , 2011, Cell.

[228]  Jørgen Kjems,et al.  miRNA‐dependent gene silencing involving Ago2‐mediated cleavage of a circular antisense RNA , 2011, The EMBO journal.

[229]  A. Fine,et al.  A Shh/miR-206/BDNF Cascade Coordinates Innervation and Formation of Airway Smooth Muscle , 2011, The Journal of Neuroscience.

[230]  J. Steitz,et al.  A primate herpesvirus uses the integrator complex to generate viral microRNAs. , 2011, Molecular cell.

[231]  D. Bartel,et al.  MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes. , 2011, Molecular cell.

[232]  D. Watanabe,et al.  miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression , 2011, Nature Neuroscience.

[233]  P. Sharp,et al.  Mir-290–295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects , 2011, Proceedings of the National Academy of Sciences.

[234]  P. Pandolfi,et al.  A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? , 2011, Cell.

[235]  E. Olson,et al.  Mice lacking microRNA 133a develop dynamin 2–dependent centronuclear myopathy. , 2011, The Journal of clinical investigation.

[236]  Hyeshik Chang,et al.  Dicer recognizes the 5′ end of RNA for efficient and accurate processing , 2011, Nature.

[237]  D. Bartel,et al.  Weak Seed-Pairing Stability and High Target-Site Abundance Decrease the Proficiency of lsy-6 and Other miRNAs , 2011, Nature Structural &Molecular Biology.

[238]  Yukio Nakamura,et al.  Chondrocyte-Specific MicroRNA-140 Regulates Endochondral Bone Development and Targets Dnpep To Modulate Bone Morphogenetic Protein Signaling , 2011, Molecular and Cellular Biology.

[239]  Charles E. Vejnar,et al.  Silencing of c-Fos expression by microRNA-155 is critical for dendritic cell maturation and function. , 2011, Blood.

[240]  Paul J. Hertzog,et al.  Analysis of microRNA turnover in mammalian cells following Dicer1 ablation , 2011, Nucleic acids research.

[241]  Hiroshi Kiyonari,et al.  MicroRNA-9 Regulates Neurogenesis in Mouse Telencephalon by Targeting Multiple Transcription Factors , 2011, The Journal of Neuroscience.

[242]  A. Shyu,et al.  Mechanisms of deadenylation‐dependent decay , 2011, Wiley interdisciplinary reviews. RNA.

[243]  Stuart L. Johnson,et al.  miR-96 regulates the progression of differentiation in mammalian cochlear inner and outer hair cells , 2011, Proceedings of the National Academy of Sciences.

[244]  Zachary Pincus,et al.  MicroRNAs Both Promote and Antagonize Longevity in C. elegans , 2010, Current Biology.

[245]  D. Bartel,et al.  Formation, Regulation and Evolution of Caenorhabditis elegans 3′UTRs , 2010, Nature.

[246]  Ryan M. O’Connell,et al.  MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. , 2010, Immunity.

[247]  Takeshi Kimura,et al.  MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo , 2010, Proceedings of the National Academy of Sciences.

[248]  David Baltimore,et al.  Function of miR-146a in Controlling Treg Cell-Mediated Regulation of Th1 Responses , 2010, Cell.

[249]  B. Berger,et al.  Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3′UTRs , 2010, Proceedings of the National Academy of Sciences.

[250]  E. Lai,et al.  Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis , 2010, Proceedings of the National Academy of Sciences.

[251]  Xiaoxia Qi,et al.  Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. , 2010, Genes & development.

[252]  Tsutomu Suzuki,et al.  Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. , 2010, Molecular cell.

[253]  A. Abbott,et al.  Loss of Individual MicroRNAs Causes Mutant Phenotypes in Sensitized Genetic Backgrounds in C. elegans , 2010, Current Biology.

[254]  Anton J. Enright,et al.  The miR-144/451 locus is required for erythroid homeostasis , 2010, The Journal of experimental medicine.

[255]  David W. Taylor,et al.  A Novel miRNA Processing Pathway Independent of Dicer Requires Argonaute2 Catalytic Activity , 2010, Science.

[256]  C. Mello,et al.  Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. , 2010, Molecular cell.

[257]  J. Steitz,et al.  Down-Regulation of a Host MicroRNA by a Herpesvirus saimiri Noncoding RNA , 2010, Science.

[258]  Zhiping Weng,et al.  Target RNA–Directed Trimming and Tailing of Small Silencing RNAs , 2010, Science.

[259]  N. Sonenberg,et al.  Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2 , 2010, Nature.

[260]  G. Hannon,et al.  A dicer-independent miRNA biogenesis pathway that requires Ago catalysis , 2010, Nature.

[261]  Corinne Da Silva,et al.  The Ectocarpus genome and the independent evolution of multicellularity in brown algae , 2010, Nature.

[262]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[263]  S. Takada,et al.  MicroRNA-140 plays dual roles in both cartilage development and homeostasis. , 2010, Genes & development.

[264]  Kyle Kai-How Farh,et al.  Expanding the microRNA targeting code: functional sites with centered pairing. , 2010, Molecular cell.

[265]  C. Nusbaum,et al.  Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. , 2010, Genes & development.

[266]  Michael B. Stadler,et al.  Characterizing Light-Regulated Retinal MicroRNAs Reveals Rapid Turnover as a Common Property of Neuronal MicroRNAs , 2010, Cell.

[267]  Loyal A Goff,et al.  Differential regulation of microRNA stability. , 2010, RNA.

[268]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[269]  H. Horvitz,et al.  Many Families of C. elegans MicroRNAs Are Not Essential for Development or Viability , 2010, Current Biology.

[270]  Andrea Califano,et al.  The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. , 2010, Cancer cell.

[271]  B. Cullen,et al.  A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral MicroRNAs. , 2010, Molecular cell.

[272]  John McAnally,et al.  MicroRNA-206 Delays ALS Progression and Promotes Regeneration of Neuromuscular Synapses in Mice , 2009, Science.

[273]  E. Olson,et al.  A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. , 2009, Developmental cell.

[274]  David G Hendrickson,et al.  Concordant Regulation of Translation and mRNA Abundance for Hundreds of Targets of a Human microRNA , 2009, PLoS biology.

[275]  Ciro Indolfi,et al.  The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease , 2009, Cell Death and Differentiation.

[276]  T. Tuschl,et al.  Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes , 2009, Nature.

[277]  John McAnally,et al.  MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. , 2009, Genes & development.

[278]  M. Kiebler,et al.  Faculty Opinions recommendation of Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. , 2009 .

[279]  Jian-Fu Chen,et al.  MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. , 2009, The Journal of clinical investigation.

[280]  R. Gregory,et al.  Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in embryonic stem cells , 2009, Nature Structural &Molecular Biology.

[281]  C. Joo,et al.  TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation , 2009, Cell.

[282]  D. Cacchiarelli,et al.  Coupled RNA Processing and Transcription of Intergenic Primary MicroRNAs , 2009, Molecular and Cellular Biology.

[283]  Tamas Dalmay,et al.  Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss , 2009, Nature Genetics.

[284]  Ryan M. O’Connell,et al.  Inositol phosphatase SHIP1 is a primary target of miR-155 , 2009, Proceedings of the National Academy of Sciences.

[285]  Anton J. Enright,et al.  An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice , 2009, Nature Genetics.

[286]  E. Vigorito,et al.  Cutting Edge: The Foxp3 Target miR-155 Contributes to the Development of Regulatory T Cells1 , 2009, The Journal of Immunology.

[287]  Gregory J. Hannon,et al.  Small RNAs as Guardians of the Genome , 2009, Cell.

[288]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[289]  Hana Lee,et al.  Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. , 2009, Immunity.

[290]  D. Haussler,et al.  Posttranscriptional Crossregulation between Drosha and DGCR8 , 2009, Cell.

[291]  K. Stankunas,et al.  Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126 , 2008, Development.

[292]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[293]  E. Olson,et al.  microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. , 2008, Genes & development.

[294]  Takahiro Sato,et al.  Dnm3os, a non‐coding RNA, is required for normal growth and skeletal development in mice , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[295]  N. Rajewsky,et al.  A human snoRNA with microRNA-like functions. , 2008, Molecular cell.

[296]  David P. Bartel,et al.  Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals , 2008, Nature.

[297]  C. Joo,et al.  Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. , 2008, Molecular cell.

[298]  Robert Blelloch,et al.  Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. , 2008, Genes & development.

[299]  E. Koonin,et al.  Origins and evolution of eukaryotic RNA interference. , 2008, Trends in ecology & evolution.

[300]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[301]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[302]  John McAnally,et al.  The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. , 2008, Developmental cell.

[303]  Megan F. Cole,et al.  Connecting microRNA Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells , 2008, Cell.

[304]  Molly Megraw,et al.  Frequency and fate of microRNA editing in human brain , 2008, Nucleic acids research.

[305]  Thomas Tuschl,et al.  MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. , 2008, Immunity.

[306]  Michel C Nussenzweig,et al.  MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. , 2008, Immunity.

[307]  Ryan D. Morin,et al.  Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. , 2008, Genome research.

[308]  N. Rajewsky,et al.  Discovering microRNAs from deep sequencing data using miRDeep , 2008, Nature Biotechnology.

[309]  Rudolf Jaenisch,et al.  Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17∼92 Family of miRNA Clusters , 2008, Cell.

[310]  O. Kirak,et al.  Regulation of progenitor cell proliferation and granulocyte function by microRNA-223 , 2008, Nature.

[311]  Kenji Nakamura,et al.  Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta , 2008, Nature Genetics.

[312]  Manolis Kellis,et al.  A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. , 2008, Genes & development.

[313]  Shulan Tian,et al.  Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells , 2007, Science.

[314]  K. Roemer,et al.  Epstein–Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5 , 2007, Nucleic acids research.

[315]  Manolis Kellis,et al.  Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. , 2007, Genome research.

[316]  Colin N. Dewey,et al.  Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures , 2007, Nature.

[317]  Manolis Kellis,et al.  Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. , 2007, Genome research.

[318]  H. Horvitz,et al.  Most Caenorhabditis elegans microRNAs Are Individually Not Essential for Development or Viability , 2007, PLoS genetics.

[319]  N. Rajewsky,et al.  MiR-150 Controls B Cell Differentiation by Targeting the Transcription Factor c-Myb , 2007, Cell.

[320]  Yukio Kawahara,et al.  RNA editing of the microRNA‐151 precursor blocks cleavage by the Dicer–TRBP complex , 2007, EMBO reports.

[321]  E. Lai,et al.  The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila , 2007, Cell.

[322]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[323]  D. Bartel,et al.  Intronic microRNA precursors that bypass Drosha processing , 2007, Nature.

[324]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[325]  D. Baulcombe,et al.  miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii , 2007, Nature.

[326]  G. Hannon,et al.  A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. , 2007, Genes & development.

[327]  N. Rajewsky,et al.  Regulation of the Germinal Center Response by MicroRNA-155 , 2007, Science.

[328]  Anton J. Enright,et al.  Requirement of bic/microRNA-155 for Normal Immune Function , 2007, Science.

[329]  Xiaoxia Qi,et al.  Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA , 2007, Science.

[330]  Ola Snøve,et al.  Distance constraints between microRNA target sites dictate efficacy and cooperativity , 2007, Nucleic acids research.

[331]  A. Hatzigeorgiou,et al.  Redirection of Silencing Targets by Adenosine-to-Inosine Editing of miRNAs , 2007, Science.

[332]  Christopher M. Player,et al.  Large-Scale Sequencing Reveals 21U-RNAs and Additional MicroRNAs and Endogenous siRNAs in C. elegans , 2006, Cell.

[333]  T. Rana,et al.  Translation Repression in Human Cells by MicroRNA-Induced Gene Silencing Requires RCK/p54 , 2006, PLoS biology.

[334]  Byoung-Tak Zhang,et al.  Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex , 2006, Cell.

[335]  Noam Shomron,et al.  Canalization of development by microRNAs , 2006, Nature Genetics.

[336]  D. Bartel,et al.  MicroRNAS and their regulatory roles in plants. , 2006, Annual review of plant biology.

[337]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[338]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[339]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[340]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[341]  Isabelle Behm-Ansmant,et al.  A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. , 2005, RNA.

[342]  Shivakundan Singh Tej,et al.  Elucidation of the Small RNA Component of the Transcriptome , 2005, Science.

[343]  Xuemei Chen,et al.  Methylation Protects miRNAs and siRNAs from a 3′-End Uridylation Activity in Arabidopsis , 2005, Current Biology.

[344]  Min Han,et al.  The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. , 2005, Molecular cell.

[345]  Ben Berkhout,et al.  Suppression of RNA Interference by Adenovirus Virus-Associated RNA , 2005, Journal of Virology.

[346]  B. Cullen,et al.  Efficient Processing of Primary microRNA Hairpins by Drosha Requires Flanking Nonstructured RNA Sequences* , 2005, Journal of Biological Chemistry.

[347]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[348]  James M. Pipas,et al.  SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells , 2005, Nature.

[349]  Florian Caiment,et al.  RNAi-Mediated Allelic trans-Interaction at the Imprinted Rtl1/Peg11 Locus , 2005, Current Biology.

[350]  D. Barford,et al.  Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex , 2005, Nature.

[351]  Thomas Tuschl,et al.  Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein , 2005, Nature.

[352]  D. Bartel,et al.  Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. , 2005, RNA.

[353]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[354]  C. Sander,et al.  Identification of microRNAs of the herpesvirus family , 2005, Nature Methods.

[355]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[356]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[357]  B. Cullen,et al.  Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha , 2005, The EMBO journal.

[358]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[359]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[360]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[361]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[362]  Eric Westhof,et al.  Single Processing Center Models for Human Dicer and Bacterial RNase III , 2004, Cell.

[363]  D. Bartel,et al.  Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs , 2004, Nature Reviews Genetics.

[364]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[365]  K. Czaplinski,et al.  Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. , 2004, RNA.

[366]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[367]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[368]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[369]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[370]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[371]  S. Jayasena,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[372]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[373]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[374]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[375]  G. Ruvkun,et al.  A uniform system for microRNA annotation. , 2003, RNA.

[376]  V. Kim,et al.  MicroRNA maturation: stepwise processing and subcellular localization , 2002, The EMBO journal.

[377]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[378]  Thomas Tuschl,et al.  Expanding small RNA interference , 2002, Nature Biotechnology.

[379]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[380]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[381]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[382]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[383]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[384]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[385]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[386]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[387]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[388]  V. Ambros,et al.  The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. , 1999, Developmental biology.

[389]  V. Ambros,et al.  The Cold Shock Domain Protein LIN-28 Controls Developmental Timing in C. elegans and Is Regulated by the lin-4 RNA , 1997, Cell.

[390]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[391]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[392]  H. Lipkin Where is the ?c? , 1978 .

[393]  C. W. Greene,et al.  THE FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY. , 1917, Science.

[394]  Jeffrey K. Mito,et al.  MicroRNA-182 drives metastasis of primary sarcomas by targeting multiple genes. , 2016, The Journal of clinical investigation.

[395]  Patrick Callier,et al.  Germline deletion of the miR-17-92 cluster causes growth and skeletal defects in humans , 2011, Nature Genetics.

[396]  L. V. van Dyk,et al.  Mature and functional viral miRNAs transcribed from novel RNA polymerase III promoters. , 2010, RNA.

[397]  Y. Tomari,et al.  Making RISC. , 2010, Trends in biochemical sciences.

[398]  Robert L. Judson,et al.  Opposing microRNA families regulate self-renewal in mouse embryonic stem cells , 2010, Nature.

[399]  Eugene Berezikov,et al.  Functionally distinct regulatory RNAs generated by bidirectional transcription and processing of microRNA loci. , 2008, Genes & development.

[400]  Jun S. Song,et al.  Chromatin structure analyses identify miRNA promoters , 2008 .

[401]  W. Bender,et al.  MicroRNAs in the Drosophila bithorax complex. , 2008, Genes & development.

[402]  P. Seeburg,et al.  Modulation of microRNA processing and expression through RNA editing by ADAR deaminases , 2006, Nature Structural &Molecular Biology.

[403]  S. Akira,et al.  Genetic and pharmacological inhibition of microRNA-92a maintains podocyte cell cycle quiescence and limits crescentic glomerulonephritis , 2017, Nature Communications.

[404]  P. Linsley,et al.  miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice , 2011, The Journal of experimental medicine.