Efficient Convergent Maximum Likelihood Decoding on Tail-Biting Trellises

An algorithm for exact maximum likelihood(ML) decoding on tail-biting trellises is presented, which exhibits very good average case behavior. An approximate variant is proposed, whose simulated performance is observed to be virtually indistinguishable from the exact one at all values of signal to noise ratio, and which effectively performs computations equivalent to at most two rounds on the tail-biting trellis. The approximate algorithm is analyzed, and the conditions under which its output is different from the ML output are deduced. The results of simulations on an AWGN channel for the exact and approximate algorithms on the 16 state tail-biting trellis for the (24,12) Extended Golay Code, and tail-biting trellises for two rate 1/2 convolutional codes with memories of 4 and 6 respectively, are reported. An advantage of our algorithms is that they do not suffer from the effects of limit cycles or the presence of pseudocodewords.

[1]  Frank R. Kschischang,et al.  On the trellis structure of block codes , 1994, IEEE Trans. Inf. Theory.

[2]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  John B. Anderson,et al.  Tailbiting MAP Decoders , 1998, IEEE J. Sel. Areas Commun..

[4]  Chilukuri K. Mohan,et al.  Efficient Heuristic Search Algorithms for Soft-Decision Decoding of Linear Block Codes , 1998, IEEE Trans. Inf. Theory.

[5]  Carlos R. P. Hartmann,et al.  Generalization of chase algorithms for soft decision decoding of binary linear codes , 1984, IEEE Trans. Inf. Theory.

[6]  Frank R. Kschischang,et al.  A Sequential Decoder for Linear Block Codes with a Variable Bias-Term Metric , 1998, IEEE Trans. Inf. Theory.

[7]  Yunghsiang Sam Han,et al.  A maximum-likelihood soft-decision sequential decoding algorithm for binary convolutional codes , 2002, IEEE Trans. Commun..

[8]  Frank R. Kschischang,et al.  On the Trellis Structure of Bloc , 1995 .

[9]  Priti Shankar,et al.  ML decoding of block codes on their tailbiting trellises , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[10]  Robert J. McEliece,et al.  On the BCJR trellis for linear block codes , 1996, IEEE Trans. Inf. Theory.

[11]  Jack K. Wolf,et al.  On Tail Biting Convolutional Codes , 1986, IEEE Trans. Commun..

[12]  G. Solomon,et al.  A Connection Between Block and Convolutional Codes , 1979 .

[13]  Robert J. McEliece,et al.  Iterative min-sum decoding of tail-biting codes , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[14]  Yunghsiang Sam Han A New Treatment of Priority-First Search Maximum-Likelihood Soft-Decision Decoding of Linear Block Codes , 1998, IEEE Trans. Inf. Theory.

[15]  Alfred V. Aho,et al.  Data Structures and Algorithms , 1983 .

[16]  R. V. Cox,et al.  An efficient adaptive circular Viterbi algorithm for decoding generalized tailbiting convolutional codes , 1994 .

[17]  Samuel Dolinar,et al.  A* decoding of block codes , 1996, IEEE Trans. Commun..

[18]  Patrick G. Farrell,et al.  On Hybrid Stack Decoding Algorithms for Block Codes , 1998, IEEE Trans. Inf. Theory.

[19]  Shu Lin,et al.  General structure and construction of tail biting trellises for linear block codes , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[20]  Yair Be'ery,et al.  Linear tail-biting trellises, the square-root bound, and applications for Reed-Muller codes , 2000, IEEE Trans. Inf. Theory.

[21]  Yunghsiang Sam Han,et al.  Decoding Linear Block Codes Using a Priority-First Search : Performance Analysis and Suboptimal Version , 1998, IEEE Trans. Inf. Theory.

[22]  Shu Lin,et al.  Two decoding algorithms for tailbiting codes , 2003, IEEE Trans. Commun..

[23]  F. Jelinek Fast sequential decoding algorithm using a stack , 1969 .

[24]  A. Robert Calderbank,et al.  Minimal tail-biting trellises: The Golay code and more , 1999, IEEE Trans. Inf. Theory.

[25]  John B. Anderson,et al.  An optimal circular Viterbi decoder for the bounded distance criterion , 2002, IEEE Trans. Commun..

[26]  R. Koetter,et al.  The structure of tail-biting trellises: minimality and basic principles , 2002, Proceedings IEEE International Symposium on Information Theory,.

[27]  Yunghsiang Sam Han,et al.  Efficient priority-first search maximum-likelihood soft-decision decoding of linear block codes , 1993, IEEE Trans. Inf. Theory.

[28]  Alexander Vardy,et al.  On the Theory of Linear Trellises , 2002 .

[29]  Alexander Vardy,et al.  The structure of tail-biting trellises: minimality and basic principl , 2002, IEEE Trans. Inf. Theory.

[30]  B. Sundar Rajan,et al.  On viewing block codes as finite automata , 2003, Theor. Comput. Sci..

[31]  B. Sundar Rajan,et al.  On the Many Faces of Block Codes , 2000, STACS.

[32]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.