Chapter 4 PLS Path Modeling in Hospitality and Tourism Research: The Golden Age and Days of Future Past

[1]  Charbel José Chiappetta Jabbour,et al.  'Too-much-of-a-good-thing'? The role of advanced eco-learning and contingency factors on the relationship between corporate environmental and financial performance. , 2018, Journal of environmental management.

[2]  Heungsun Hwang,et al.  Comparisons among several consistent estimators of structural equation models , 2017 .

[3]  Guy Assaker,et al.  Using Partial Least Squares Structural Equation Modeling in Tourism Research , 2016 .

[4]  Christian Nitzl,et al.  Mediation Analysis in Partial Least Squares Path Modeling: Helping Researchers Discuss More Sophisticated Models , 2016, Ind. Manag. Data Syst..

[5]  Rudolf R. Sinkovics,et al.  A Critical Look at the Use of SEM in International Business Research , 2014 .

[6]  G. Mateos-Aparicio Partial Least Squares (PLS) Methods: Origins, Evolution, and Application to Social Sciences , 2011 .

[7]  R. Noonan Partial Least Squares: The Gestation Period , 2017 .

[8]  Alain Yee-Loong Chong,et al.  An updated and expanded assessment of PLS-SEM in information systems research , 2017, Ind. Manag. Data Syst..

[9]  Jörg Henseler,et al.  Analysing quadratic effects of formative constructs by means of variance-based structural equation modelling , 2012, Eur. J. Inf. Syst..

[10]  Marko Sarstedt,et al.  Segmentation of PLS path models by iterative reweighted regressions , 2015 .

[11]  C. Jabbour,et al.  Ethical awareness, ethical judgment, andwhistleblowing: A moderated mediation analysis , 2017 .

[12]  Jörg Henseler,et al.  Consistent and asymptotically normal PLS estimators for linear structural equations , 2014 .

[13]  Marko Sarstedt,et al.  Gain more insight from your PLS-SEM results: The importance-performance map analysis , 2016, Ind. Manag. Data Syst..

[14]  Ned Kock,et al.  Minimum sample size estimation in PLS‐SEM: The inverse square root and gamma‐exponential methods , 2018, Inf. Syst. J..

[15]  Herman Aguinis,et al.  The Too-Much-of-a-Good-Thing Effect in Management , 2013 .

[16]  Lutz Kaufmann,et al.  A structured review of partial least squares in supply chain management research , 2015 .

[17]  Jeremy B. Bernerth,et al.  A Critical Review and Best‐Practice Recommendations for Control Variable Usage , 2016 .

[18]  J. Edwards,et al.  Partial least squares path modeling: Time for some serious second thoughts , 2016 .

[19]  J. Henseler Bridging Design and Behavioral Research With Variance-Based Structural Equation Modeling , 2017 .

[20]  Kim Willems,et al.  Dealing with Nonlinearity in Importance-Performance Map Analysis (IPMA): An Integrative Framework in a PLS-SEM Context , 2017 .

[21]  Joseph F. Hair,et al.  Estimation issues with PLS and CBSEM: Where the bias lies! ☆ , 2016 .

[22]  Marko Sarstedt,et al.  The Use of Partial Least Squares Structural Equation Modeling in Strategic Management Research: A Review of Past Practices and Recommendations for Future Applications , 2012 .

[23]  Mikko Rönkkö The Effects of Chance Correlations on Partial Least Squares Path Modeling , 2014 .

[24]  Martin Wetzels,et al.  Hierarchical latent variable models in PLS-SEM: guidelines for using reflective-formative type models , 2012 .

[25]  Marko Sarstedt,et al.  Treating Unobserved Heterogeneity in PLS-SEM: A Multi-method Approach , 2017 .

[26]  Rosanna Cataldo,et al.  Developments in Higher-Order PLS-PM for the building of a system of Composite Indicators , 2016, Quality & Quantity.

[27]  Utility Analysis from the Point of View of Model Building , 1983 .

[28]  Marko Sarstedt,et al.  Testing measurement invariance of composites using partial least squares , 2016 .

[29]  Marko Sarstedt,et al.  Guidelines for treating unobserved heterogeneity in tourism research: A comment on Marques and Reis (2015) , 2016 .

[30]  Faizan Ali,et al.  An Assessment of the Use of Partial Least Squares Structural Equation Modeling (PLS-SEM) in Hospitality Research , 2017 .

[31]  Jörg Henseler,et al.  Partial least squares path modeling using ordinal categorical indicators , 2016, Quality & Quantity.

[32]  Marko Sarstedt,et al.  Goodness-of-fit indices for partial least squares path modeling , 2013, Comput. Stat..

[33]  Mary Tate,et al.  Assessing the predictive performance of structural equation model estimators , 2016 .

[34]  Ivan Ka Wai Lai,et al.  Importance–performance analysis in tourism: A framework for researchers , 2015 .

[35]  Gautam Ray,et al.  Impact of Information Technology Infrastructure Flexibility on Mergers and Acquisitions , 2018, MIS Q..

[36]  Joseph A. Cote,et al.  Multicollinearity and Measurement Error in Structural Equation Models: Implications for Theory Testing , 2004 .

[37]  Marko Sarstedt,et al.  Editorial - Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance , 2013 .

[38]  H. Wold Soft Modelling by Latent Variables: The Non-Linear Iterative Partial Least Squares (NIPALS) Approach , 1975, Journal of Applied Probability.

[39]  Herman Aguinis,et al.  What You See is What You Get? Enhancing Methodological Transparency in Management Research , 2017 .

[40]  Elizabeth Reis,et al.  How to deal with heterogeneity among tourism constructs , 2015 .

[41]  Herman Wold,et al.  Model Construction and Evaluation When Theoretical Knowledge Is Scarce , 1980 .

[42]  Wynne W. Chin,et al.  You Write, but Others Read: Common Methodological Misunderstandings in PLS and Related Methods , 2013 .

[43]  Christian Nitzl,et al.  The use of partial least squares structural equation modelling (PLS-SEM) in management accounting research: Directions for future theory development , 2016 .

[44]  T. Dijkstra,et al.  Consistent Partial Least Squares for Nonlinear Structural Equation Models , 2013, Psychometrika.

[45]  Galit Shmueli,et al.  The elephant in the room: Predictive performance of PLS models , 2016 .

[46]  Jörg Henseler,et al.  Testing moderating effects in PLS path models with composite variables , 2016, Ind. Manag. Data Syst..

[47]  Mikko Rönkkö,et al.  A Critical Examination of Common Beliefs About Partial Least Squares Path Modeling , 2013 .

[48]  Geoffrey S. Hubona,et al.  Partial least squares path modeling : Updated guidelines , 2017 .

[49]  R. Kaiser,et al.  The Too Little/Too Much Scale , 2017 .

[50]  Stacie Petter,et al.  On the use of partial least squares path modeling in accounting research , 2011, Int. J. Account. Inf. Syst..

[51]  José L. Roldán,et al.  Prediction-oriented modeling in business research by means of PLS path modeling: Introduction to a JBR special section , 2016 .

[52]  Ziliang Deng,et al.  Assessing endogeneity issues in international marketing research , 2016 .

[53]  Carlo Lauro,et al.  Predictive Path Modeling Through PLS and Other Component-Based Approaches: Methodological Issues and Performance Evaluation , 2017 .

[54]  Marko Sarstedt,et al.  PLS-SEM: Indeed a Silver Bullet , 2011 .

[55]  Jan-Michael Becker,et al.  Accounting for sampling weights in PLS path modeling: Simulations and empirical examples , 2016 .

[56]  Jeffrey R. Edwards,et al.  Reflections on Partial Least Squares Path Modeling , 2014 .

[57]  V. Daniel R. Guide,et al.  Notes from the Editors: Redefining some methodological criteria for the journal ☆ , 2015 .

[58]  L. Vismara,et al.  Parenting Stress, Mental Health, Dyadic Adjustment: A Structural Equation Model , 2017, Front. Psychol..

[59]  Edward E. Rigdon,et al.  On Comparing Results from CB-SEM and PLS-SEM: Five Perspectives and Five Recommendations , 2017 .

[60]  Siegfried P. Gudergan,et al.  Confirmatory Tetrad Analysis in PLS Path Modeling , 2008 .

[61]  H. Wold Path Models with Latent Variables: The NIPALS Approach , 1975 .

[62]  Edward E. Rigdon,et al.  Choosing PLS path modeling as analytical method in European management research: A realist perspective , 2016 .

[63]  George M. Marakas,et al.  Measurement of composite reliability in research using partial least squares: some issues and an alternative approach , 2013, DATB.

[64]  Jörg Henseler,et al.  Estimating hierarchical constructs using consistent partial least squares: The case of second-order composites of common factors , 2017, Ind. Manag. Data Syst..

[65]  Wynne W. Chin,et al.  A Comparison of Approaches for the Analysis of Interaction Effects Between Latent Variables Using Partial Least Squares Path Modeling , 2010 .

[66]  Adamantios Diamantopoulos,et al.  Selecting single items to measure doubly concrete constructs: A cautionary tale , 2016 .

[67]  Marko Sarstedt,et al.  An assessment of the use of partial least squares structural equation modeling in marketing research , 2012 .

[68]  Marko Sarstedt,et al.  Identifying and treating unobserved heterogeneity with FIMIX-PLS: part I – method , 2016 .

[69]  Lucy Matthews,et al.  Applying Multigroup Analysis in PLS-SEM: A Step-by-Step Process , 2017 .

[70]  D. Straub,et al.  Editor's comments: a critical look at the use of PLS-SEM in MIS quarterly , 2012 .

[71]  Arun Rai,et al.  Discovering Unobserved Heterogeneity in Structural Equation Models to Avert Validity Threats , 2013, MIS Q..

[72]  Mikko Rönkkö,et al.  On the adoption of partial least squares in psychological research: Caveat emptor , 2015 .