Effect of oxidative stress stimulation on intracellular PTEN trafficking in ovarian cancer by fluorescence correlation spectroscopy

The phosphatase and tensin homolog on chromosome 10 (PTEN) is one of important tumor suppressor proteins in ovarian cancer via negatively regulating the phosphatidylinositol 3-kinase–AKT signaling pathway and controlling genomic stability. Recent studies showed the physiological function of PTEN was closely related with its subcellular compartments. But only a few technologies could quantitatively measure the concentration of PTEN at different subcellular compartments in living cells. In this study, we used fluorescence correlation spectroscopy to measure the concentrations and dynamics of EGFP-PTEN in ovarian cancer cells HO-8910. Our results showed the increasing concentration of PTEN in the cytoplasm had an opposite trends with the nucleus after the oxidative stress stimulation which was induced by H2O2. Furthermore, the altered diffusion of PTEN at different subcellular compartments also illustrated the PTEN was trafficked from the cytoplasm to nucleus.