Parameter Estimation for Signal Transduction Networks from Experimental Time Series Using Picard Iteration

Abstract Biological signal transduction models allow to explain and analyze biological cause-effect relationships and to establish and test new hypotheses about biological pathways. Yet their predictive capability crucially depends on the parameters involved. These parameters are usually determined from experimental data. However, due to the appearing nonlinearities, the resulting inverse problem is often ill-posed and difficult to solve. We outline how parameters can be estimated based on Picard iterations. In case of linear parameter dependence and good measurements of the involved entities, the method allows to retrieve good parameter estimates for medium size problems. The proposed method is applied to an IL-6-dependent Jak-STAT3 signalling pathway model. As shown it it is well suited for data generated by life cell imaging where accurate time series are available.

[1]  Takaho A. Endo,et al.  A new protein containing an SH2 domain that inhibits JAK kinases , 1997, Nature.

[2]  Thierry Bastogne,et al.  The Experimental Side of Parameter Estimation , 2016 .

[3]  Frank Allgöwer,et al.  Observability based parameter identifiability for biochemical reaction networks , 2008, 2008 American Control Conference.

[4]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[5]  J. Scheller,et al.  Interleukin‐6 Trans‐Signalling in Chronic Inflammation and Cancer , 2006, Scandinavian journal of immunology.

[6]  Jochen H M Prehn,et al.  Computational Analysis of AMPK-Mediated Neuroprotection Suggests Acute Excitotoxic Bioenergetics and Glucose Dynamics Are Regulated by a Minimal Set of Critical Reactions , 2016, PloS one.

[7]  P. Otter Dynamic structural systems under indirect observation: identifiability and estimation aspects from a system theoretic perspective , 1986 .

[8]  Richard H. Middleton,et al.  Equilibria and stability of a class of positive feedback loops , 2014, Journal of mathematical biology.

[9]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[10]  J. Geoffrey Chase,et al.  Characterisation of the iterative integral parameter identification method , 2011, Medical & Biological Engineering & Computing.

[11]  Mustafa Khammash,et al.  Parameter Estimation and Model Selection in Computational Biology , 2010, PLoS Comput. Biol..

[12]  E. Vrscay,et al.  CORRIGENDUM: Solving inverse problems for ordinary differential equations using the Picard contraction mapping , 1999 .

[13]  E. Voit,et al.  Pathway Analysis and Optimization in Metabolic Engineering , 2002 .

[14]  H. Leeb,et al.  An exact inversion method for the determination of spin–orbit potentials from scattering data , 1998 .

[15]  Martin Mönnigmann,et al.  Model-driven experimental analysis of the function of SHP-2 in IL-6-induced Jak/STAT signaling. , 2012, Molecular bioSystems.

[16]  V. W. Noonburg,et al.  Ordinary Differential Equations , 2014 .

[17]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[18]  I. Chou,et al.  Recent developments in parameter estimation and structure identification of biochemical and genomic systems. , 2009, Mathematical biosciences.

[19]  Robert D. Tanner Estimating Kinetic Rate Constants Using Orthogonal Polynomials and Picard's Iteration Method , 1972 .

[20]  Philipp Rumschinski,et al.  Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks , 2010, BMC Systems Biology.

[21]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[22]  J. Schaber,et al.  Model-based inference of biochemical parameters and dynamic properties of microbial signal transduction networks. , 2011, Current opinion in biotechnology.

[23]  E. Passante,et al.  Signal transduction analysis of the NLRP3-inflammasome pathway after cellular damage and its paracrine regulation. , 2017, Journal of theoretical biology.

[24]  P. Heinrich,et al.  Principles of interleukin (IL)-6-type cytokine signalling and its regulation. , 2003, The Biochemical journal.

[25]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[26]  Yang Liu,et al.  Parameter estimation of dynamic biological network models using integrated fluxes , 2014, BMC Systems Biology.

[27]  Marcello Farina,et al.  Results Towards Identifiability Properties of Biochemical Reaction Networks , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[28]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[29]  Philipp Rumschinski,et al.  Methodology article Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks , 2010 .

[30]  W. Marquardt,et al.  Incremental Identification of Reaction Systems - A Comparison between Rate-based and Extent-based Approaches , 2012 .

[31]  Eberhard O. Voit,et al.  Biochemical Systems Theory: A Review , 2013 .