Quantum circuits for asymmetric 1 to n quantum cloning
暂无分享,去创建一个
Heng Fan | Xi-Jun Ren | H. Fan | X. Ren
[1] W. Wootters,et al. A single quantum cannot be cloned , 1982, Nature.
[2] Cerf,et al. Pauli cloning of a quantum Bit , 2000, Physical review letters.
[3] Robert B. Griffiths,et al. Optimal copying of one quantum bit , 1998 .
[4] Samuel L. Braunstein,et al. Quantum-information distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit , 2001 .
[5] Heng Fan,et al. Optimal asymmetric 1 → 4 quantum cloning in arbitrary dimension , 2011 .
[6] Li Jing,et al. Unified universal quantum cloning machine and fidelities , 2011, 1104.4014.
[7] M. Hillery,et al. Quantum copying: A network , 1997 .
[8] M. Kim,et al. Information-flux approach to multiple-spin dynamics , 2007, 0705.4076.
[9] Nicolas J. Cerf,et al. Highly asymmetric quantum cloning in arbitrary dimension , 2005, Quantum Inf. Comput..
[10] Buzek,et al. Quantum copying: Beyond the no-cloning theorem. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[11] Ravishankar Ramanathan,et al. Optimal asymmetric quantum cloning for quantum information and computation , 2013, Quantum Inf. Comput..
[12] D. Kaszlikowski,et al. Optimal cloning and singlet monogamy. , 2009, Physical review letters.
[13] V. Scarani,et al. Quantum cloning , 2005, quant-ph/0511088.
[14] Michal Studzi'nski,et al. Region of fidelities for a 1→N universal qubit quantum cloner , 2012 .
[15] Li Jing,et al. Quantum cloning machines and the applications , 2013, 1301.2956.
[16] Mário Ziman,et al. Programmable Quantum Processors , 2006, Quantum Inf. Process..