Quantum circuits for asymmetric 1 to n quantum cloning

In this paper, we considered asymmetric 1 → n cloning circuits generalized from the asymmetric 1 → 2 cloning circuit proposed by Bužek et al. [Phys. Rev. A 56, 3446 (1997)]. The generalization is based on an information flux insight of the original cloning circuit. Specifically, the circuit separately and sequentially transfers the Z-type information and X-type information of the input state to the output copies with controlled-not gates. The initial input state of the clones defines the asymmetry among all output clones. Although the generalized circuits do not perform universally, the averaged fidelities over a uniform distribution of all possible input cloning states saturate the optimal fidelity tradeoff relations of universal asymmetric cloning.

[1]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[2]  Cerf,et al.  Pauli cloning of a quantum Bit , 2000, Physical review letters.

[3]  Robert B. Griffiths,et al.  Optimal copying of one quantum bit , 1998 .

[4]  Samuel L. Braunstein,et al.  Quantum-information distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit , 2001 .

[5]  Heng Fan,et al.  Optimal asymmetric 1 → 4 quantum cloning in arbitrary dimension , 2011 .

[6]  Li Jing,et al.  Unified universal quantum cloning machine and fidelities , 2011, 1104.4014.

[7]  M. Hillery,et al.  Quantum copying: A network , 1997 .

[8]  M. Kim,et al.  Information-flux approach to multiple-spin dynamics , 2007, 0705.4076.

[9]  Nicolas J. Cerf,et al.  Highly asymmetric quantum cloning in arbitrary dimension , 2005, Quantum Inf. Comput..

[10]  Buzek,et al.  Quantum copying: Beyond the no-cloning theorem. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[11]  Ravishankar Ramanathan,et al.  Optimal asymmetric quantum cloning for quantum information and computation , 2013, Quantum Inf. Comput..

[12]  D. Kaszlikowski,et al.  Optimal cloning and singlet monogamy. , 2009, Physical review letters.

[13]  V. Scarani,et al.  Quantum cloning , 2005, quant-ph/0511088.

[14]  Michal Studzi'nski,et al.  Region of fidelities for a 1→N universal qubit quantum cloner , 2012 .

[15]  Li Jing,et al.  Quantum cloning machines and the applications , 2013, 1301.2956.

[16]  Mário Ziman,et al.  Programmable Quantum Processors , 2006, Quantum Inf. Process..