Deterministic Coherence Distillation.

Coherence distillation is one of the central problems in the resource theory of coherence. In this Letter, we complete the deterministic distillation of quantum coherence for a finite number of coherent states under strictly incoherent operations. Specifically, we find the necessary and sufficient condition for the transformation from a mixed coherent state into a pure state via strictly incoherent operations, which recovers a connection between the resource theory of coherence and the algebraic theory of majorization lattice. With the help of this condition, we present the deterministic coherence distillation scheme and derive the maximum number of maximally coherent states obtained via this scheme.

[1]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[2]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[3]  R. Bhatia Matrix Analysis , 1996 .

[4]  F. Nori,et al.  Quantum biology , 2012, Nature Physics.

[5]  D. M. Tong,et al.  Alternative framework for quantifying coherence , 2016, 1606.03181.

[6]  Ugo Vaccaro,et al.  Supermodularity and subadditivity properties of the entropy on the majorization lattice , 2002, IEEE Trans. Inf. Theory.

[7]  Xiongfeng Ma,et al.  Intrinsic randomness as a measure of quantum coherence , 2015, 1505.04032.

[8]  Eric Chitambar,et al.  Critical Examination of Incoherent Operations and a Physically Consistent Resource Theory of Quantum Coherence. , 2016, Physical review letters.

[9]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[10]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[11]  D. Tong,et al.  Flag additivity in quantum resource theories , 2019, Physical Review A.

[12]  Gerardo Adesso,et al.  Probabilistic Distillation of Quantum Coherence. , 2018, Physical review letters.

[13]  A. Winter,et al.  Operational Resource Theory of Coherence. , 2015, Physical review letters.

[14]  Florian Mintert,et al.  A quantitative theory of coherent delocalization , 2013, 1310.6962.

[15]  内山 健太郎,et al.  26 , 2015, Magical Realism for Non-Believers.

[16]  Alexander Streltsov,et al.  Genuine quantum coherence , 2015, 1511.08346.

[17]  D. Tong,et al.  Enhancing coherence of a state by stochastic strictly incoherent operations , 2017, 1710.01055.

[18]  Yi Peng,et al.  Quantum coherence and geometric quantum discord , 2017, Physics Reports.

[19]  Xiongfeng Ma,et al.  One-Shot Coherence Dilution. , 2017, Physical review letters.

[20]  G. Adesso,et al.  One-Shot Coherence Distillation. , 2017, Physical review letters.

[21]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[22]  G. Gour,et al.  Comparison of incoherent operations and measures of coherence , 2016 .

[23]  M. Koashi,et al.  Deterministic entanglement concentration , 2001, quant-ph/0107120.

[24]  Ludovico Lami,et al.  Nonasymptotic assisted distillation of quantum coherence , 2018, Physical Review A.

[25]  E. Chitambar Dephasing-covariant operations enable asymptotic reversibility of quantum resources , 2017, 1711.10606.

[26]  S. Fei,et al.  Maximum Relative Entropy of Coherence: An Operational Coherence Measure. , 2017, Physical review letters.

[27]  A. Winter,et al.  Error exponents for entanglement concentration , 2002, quant-ph/0206097.

[28]  Gerardo Adesso,et al.  Generic Bound Coherence under Strictly Incoherent Operations. , 2018, Physical review letters.

[29]  F. Brandão,et al.  Reversible Framework for Quantum Resource Theories. , 2015, Physical review letters.

[30]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[31]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[32]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[33]  Huangjun Zhu,et al.  Operational one-to-one mapping between coherence and entanglement measures , 2017, 1704.01935.

[34]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[35]  V. Vedral,et al.  Quantum processes which do not use coherence , 2015, 1512.02085.

[36]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[37]  O. Guhne,et al.  Detecting coherence via spectrum estimation , 2018, Physical Review A.

[38]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..