Block-circulant preconditioners for systems arising from discretization of the three-dimensional convection-diffusion equation

[1]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[2]  Circulant preconditioners for convection diffusion equation , 2001 .

[3]  Chen Greif Reduced Systems for Three-Dimensional Elliptic Equations with Variable Coefficients , 1999, SIAM J. Matrix Anal. Appl..

[4]  Chen Greif,et al.  Block Stationary Methods for Nonsymmetric Cyclically Reduced Systems Arising from Three-Dimensional Elliptic Equations , 1999, SIAM J. Matrix Anal. Appl..

[5]  Lina Hemmingsson A semi-circulant preconditioner for the convection-diffusion equation , 1998, Numerische Mathematik.

[6]  Chen Greif,et al.  Iterative Solution of Cyclically Reduced Systems Arising from Discretization of the Three-Dimensional Convection-Diffusion Equation , 1998, SIAM J. Sci. Comput..

[7]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[8]  Gene H. Golub,et al.  Line Iterative Methods for Cyclically Reduced Discrete Convection-Diffusion Problems , 1992, SIAM J. Sci. Comput..

[9]  G. Golub,et al.  ITERATIVE METHODS FOR CYCLICALLY REDUCED NON-SELF-ADJOINT LINEAR SYSTEMS , 1990 .

[10]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[11]  G. Strang A proposal for toeplitz matrix calculations , 1986 .

[12]  Selim G. Akl,et al.  Design and analysis of parallel algorithms , 1985 .

[13]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .