Biomechatronics: how much biology does the engineer need?

Biomechatronics is the development and optimization of mechatronic systems using biological and medical knowledge. This strategy may be exemplified by bionically inspired robotics: identification of biological principles and their transfer into technical solutions extends the engineer's toolbox. This modified kind of constructive thinking needs an adapted foundation in academic education.

[1]  W. Ilg,et al.  Konstruktion vierbeiniger Laufmaschinen , 2000 .

[2]  R. McN. Alexander,et al.  On the synchronization of breathing with running in wallabies (Macropus spp.) and horses (Equus caballus) , 1989 .

[3]  E Bizzi,et al.  Motor learning through the combination of primitives. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  G. Cavagna,et al.  Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. , 1977, The American journal of physiology.

[5]  S. Grillner,et al.  How detailed is the central pattern generation for locomotion? , 1975, Brain Research.

[6]  Siegfried Labeit,et al.  Titins: Giant Proteins in Charge of Muscle Ultrastructure and Elasticity , 1995, Science.

[7]  T. McMahon,et al.  Size and Shape in Biology , 1973, Science.

[8]  M. Hildebrand Chapter 3. Walking and Running , 1985 .

[9]  B. Kolmerer,et al.  The complete primary structure of human nebulin and its correlation to muscle structure. , 1995, Journal of molecular biology.

[10]  R. Blickhan The spring-mass model for running and hopping. , 1989, Journal of biomechanics.

[11]  Karsten Berns,et al.  Biologically inspired Construction and Control Architecture for a quadruped Walking Machine , 1998 .

[12]  K. Wang,et al.  A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle , 1983, The Journal of cell biology.

[13]  R. Alexander,et al.  Storage of elastic strain energy in muscle and other tissues , 1977, Nature.

[14]  R. M. Alexander Why Mammals Gallop , 1988 .

[15]  Jack M. Winters,et al.  Biomechanics and Neural Control of Posture and Movement , 2011, Springer New York.

[16]  M. Fischer,et al.  Torque patterns of the limbs of small therian mammals during locomotion on flat ground. , 2002, The Journal of experimental biology.

[17]  K. Wang Purification of titin and nebulin. , 1982, Methods in enzymology.

[18]  R. Stein,et al.  Identification, Localization, and Modulation of Neural Networks for Walking in the Mudpuppy (Necturus Maculatus) Spinal Cord , 1998, The Journal of Neuroscience.

[19]  Douglas Adams,et al.  The hitchhiker's guide to the galaxy : radio scripts , 2005 .

[20]  S. Grillner Control of Locomotion in Bipeds, Tetrapods, and Fish , 1981 .

[21]  T. McMahon,et al.  The mechanics of running: how does stiffness couple with speed? , 1990, Journal of biomechanics.

[22]  J. Buchanan Neural Control of Locomotion in Lower Vertebrates: From Behavior to Ionic Mechanisms , 1988 .

[23]  Reinhard Blickhan,et al.  Stable operation of an elastic three-segment leg , 2001, Biological Cybernetics.

[24]  K. Wang,et al.  Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring. , 1993, Biophysical journal.

[25]  D'arcy W. Thompson On Growth and Form , 1945 .

[26]  R. Blickhan,et al.  Stabilizing function of skeletal muscles: an analytical investigation. , 1999, Journal of theoretical biology.

[27]  R. Alexander Elastic Mechanisms in the Locomotion of Vertebrates , 1989 .

[28]  T. McMahon Using body size to understand the structural design of animals: quadrupedal locomotion. , 1975, Journal of applied physiology.

[29]  Hartmut F. Witte,et al.  Hints for the construction of anthropomorphic robots based on the functional morphology of human walking (特集「ロコモーション」) , 2002 .

[30]  S. Grillner,et al.  On the cellular bases of vertebrate locomotion. , 1999, Progress in brain research.

[31]  K. Wang,et al.  Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[32]  H. Cruse,et al.  Die Entdeckung der Intelligenz oder können Ameisen denken?: Intelligenz bei Tieren und Maschinen , 1998 .

[33]  H. Witte,et al.  Is elastic energy storage of quantitative relevance for the functional morphology of the human locomotor apparatus? , 1997, Acta anatomica.

[34]  David Jones,et al.  Size and shape , 1996, Nature.

[35]  W. Linke,et al.  Towards a molecular understanding of the elasticity of titin. , 1996, Journal of molecular biology.

[36]  K. Wang,et al.  Cytoskeletal matrix in striated muscle: the role of titin, nebulin and intermediate filaments. , 1984, Advances in experimental medicine and biology.

[37]  Siegfried Labeit,et al.  Cardiac titin: an adjustable multi‐functional spring , 2002, The Journal of physiology.

[38]  J. Bonner D'Arcy Thompson , 1952 .

[39]  N. Heglund,et al.  Speed, stride frequency and energy cost per stride: how do they change with body size and gait? , 1988, The Journal of experimental biology.

[40]  R. M. Alexander,et al.  Elastic mechanisms in animal movement , 1988 .

[41]  S. Grillner,et al.  The intrinsic function of a motor system — from ion channels to networks and behavior 1 1 Published on the World Wide Web on 22 November 2000. , 2000, Brain Research.

[42]  Time-Life Books,et al.  WALKING AND RUNNING. , 1885, Science.

[43]  S. Rossignol,et al.  Neural Control of Rhythmic Movements in Vertebrates , 1988 .

[44]  A. Samuels,et al.  Topographic Position of Forelimb Motoneuron Pools Is Conserved in Vertebrate Evolution , 1998, Brain, Behavior and Evolution.

[45]  D. Bramble,et al.  Functional vertebrate morphology , 1985 .

[46]  K. Hummel,et al.  VISCERAL INVERSION AND ASSOCIATED ANOMALIES IN THE MOUSE , 1959 .