A parameterized multi-step Newton method for solving systems of nonlinear equations

[1]  A. H. Bhrawy,et al.  An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system , 2014, Appl. Math. Comput..

[2]  Alicia Cordero,et al.  Modifications of Newton’s method to extend the convergence domain , 2014 .

[3]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[4]  T. S. Jang,et al.  An integral equation formalism for solving the nonlinear Klein-Gordon equation , 2014, Appl. Math. Comput..

[5]  J. Sharma,et al.  Efficient Jarratt-like methods for solving systems of nonlinear equations , 2014 .

[6]  Fazlollah Soleymani,et al.  A multi-step class of iterative methods for nonlinear systems , 2014, Optim. Lett..

[7]  Fayyaz Ahmad,et al.  An Efficient Higher-Order Quasilinearization Method for Solving Nonlinear BVPs , 2013, J. Appl. Math..

[8]  Mohammad Khorsand Zak,et al.  Nested splitting conjugate gradient method for matrix equation AXB=CAXB=C and preconditioning , 2013, Comput. Math. Appl..

[9]  Emran Tohidi,et al.  Optimal control of nonlinear Volterra integral equations via Legendre polynomials , 2013, IMA J. Math. Control. Inf..

[10]  Rangan K. Guha,et al.  An efficient fourth order weighted-Newton method for systems of nonlinear equations , 2013, Numerical Algorithms.

[11]  E. Tohidi,et al.  An Efficient Legendre Pseudospectral Method for Solving Nonlinear Quasi Bang-Bang Optimal Control Problems , 2012 .

[12]  Ali H. Bhrawy,et al.  On shifted Jacobi spectral method for high-order multi-point boundary value problems , 2012 .

[13]  Emran Tohidi,et al.  The spectral method for solving systems of Volterra integral equations , 2012 .

[14]  Stanford Shateyi,et al.  New Analytic Solution to the Lane-Emden Equation of Index 2 , 2012 .

[15]  M. Zanardi,et al.  Study of Stability of Rotational Motion of Spacecraft with Canonical Variables , 2012 .

[16]  E. H. Doha,et al.  EFFICIENT CHEBYSHEV SPECTRAL METHODS FOR SOLVING MULTI-TERM FRACTIONAL ORDERS DIFFERENTIAL EQUATIONS , 2011 .

[17]  Mehdi Dehghan,et al.  The spectral collocation method with three different bases for solving a nonlinear partial differential equation arising in modeling of nonlinear waves , 2011, Math. Comput. Model..

[18]  Alicia Cordero,et al.  A modified Newton-Jarratt’s composition , 2010, Numerical Algorithms.

[19]  Saeid Abbasbandy,et al.  Numerical solution of the generalized Zakharov equation by homotopy analysis method , 2009 .

[20]  Ahmad Golbabai,et al.  Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method , 2008 .

[21]  Ben-yu Guo,et al.  Jacobi rational approximation and spectral method for differential equations of degenerate type , 2007, Math. Comput..

[22]  Z. Bai,et al.  A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations , 2007 .

[23]  José Mario Martínez,et al.  Spectral residual method without gradient information for solving large-scale nonlinear systems of equations , 2006, Math. Comput..

[24]  Fangfang Sun,et al.  Efficient and Stable Numerical Methods for the Generalized and Vector Zakharov System , 2005, SIAM J. Sci. Comput..

[25]  Jean Hertzberg,et al.  Saffman-taylor instability in a hele-shaw cell , 2004 .

[26]  Guo-Wei Wei,et al.  Numerical methods for the generalized Zakharov system , 2003 .

[27]  B. K. Datta RETRACTED ARTICLE: Analytic solution to the Lane-Emden equation , 1996 .

[28]  Qianshun Chang,et al.  Finite difference method for generalized Zakharov equations , 1995 .

[29]  Qianshun Chang,et al.  A Conservative Difference Scheme for the Zakharov Equations , 1994 .

[30]  J. M. Ortega,et al.  Solution of nonlinear Poisson-type equations , 1991 .

[31]  Stefano Serra Capizzano,et al.  An efficient multi-step iterative method for computing the numerical solution of systems of nonlinear equations associated with ODEs , 2015, Appl. Math. Comput..

[32]  N. Romeiro,et al.  Numerical Solutions of the 1D Convection–Diffusion–Reaction and the Burgers Equation Using Implicit Multi-stage and Finite Element Methods , 2013 .

[33]  K. W. Chowb,et al.  Vortex arrays for sinh-Poisson equation of two-dimensional fluids: Equilibria and stability , 2004 .

[34]  James M. Ortega,et al.  Fast Solution of Nonlinear Poisson-Type Equations , 1993, SIAM J. Sci. Comput..

[35]  J. Traub Iterative Methods for the Solution of Equations , 1982 .