Atom‐probe tomography and transmission electron microscopy of the kamacite–taenite interface in the fast‐cooled Bristol IVA iron meteorite

We report the first combined atom‐probe tomography (APT) and transmission electron microscopy (TEM) study of a kamacite–tetrataenite (K–T) interface region within an iron meteorite, Bristol (IVA). Ten APT nanotips were prepared from the K–T interface with focused ion beam scanning electron microscopy (FIB‐SEM) and then studied using TEM followed by APT. Near the K‐T interface, we found 3.8 ± 0.5 wt% Ni in kamacite and 53.4 ± 0.5 wt% Ni in tetrataenite. High‐Ni precipitate regions of the cloudy zone (CZ) have 50.4 ± 0.8 wt% Ni. A region near the CZ and martensite interface has <10 nm sized Ni‐rich precipitates with 38.4 ± 0.7 wt% Ni present within a low‐Ni matrix having 25.5 ± 0.6 wt% Ni. We found that Cu is predominantly concentrated in tetrataenite, whereas Co, P, and Cr are concentrated in kamacite. Phosphorus is preferentially concentrated along the K‐T interface. This study is the first precise measurement of the phase composition at high spatial resolution and in 3‐D of the K‐T interface region in a IVA iron meteorite and furthers our knowledge of the phase composition changes in a fast‐cooled iron meteorite below 400 °C. We demonstrate that APT in conjunction with TEM is a useful approach to study the major, minor, and trace elemental composition of nanoscale features within fast‐cooled iron meteorites.

[1]  B. Gorman,et al.  Atom probe tomography of isoferroplatinum , 2015 .

[2]  T. Stephan,et al.  Correction of dead time effects in laser-induced desorption time-of-flight mass spectrometry: Applications in atom probe tomography , 2015 .

[3]  E. Scott,et al.  Determining cooling rates of iron and stony-iron meteorites from measurements of Ni and Co at kamacite-taenite interfaces , 2014 .

[4]  M. K. Miller,et al.  Atom-Probe Tomography: The Local Electrode Atom Probe , 2014 .

[5]  A. Davis,et al.  Atom‐probe analyses of nanodiamonds from Allende , 2014 .

[6]  Simon A. Wilde,et al.  Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography , 2014 .

[7]  R. Wieler,et al.  Hf–W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites , 2012 .

[8]  David J. Larson,et al.  Atom Probe Tomography 2012 , 2012 .

[9]  S. Kleindiek,et al.  New Tools for Preparing Ultra-Thin TEM Samples , 2012, Microscopy and Microanalysis.

[10]  R. Wieler,et al.  NUCLEOSYNTHETIC TUNGSTEN ISOTOPE ANOMALIES IN ACID LEACHATES OF THE MURCHISON CHONDRITE: IMPLICATIONS FOR HAFNIUM–TUNGSTEN CHRONOMETRY , 2012 .

[11]  Baptiste Gault,et al.  Atom Probe Microscopy , 2012 .

[12]  P. Hoppe,et al.  Co/Ni ratios at taenite/kamacite interfaces and relative cooling rates in iron meteorites , 2012 .

[13]  Talukder Alam,et al.  A reproducible method for damage‐free site‐specific preparation of atom probe tips from interfaces , 2012, Microscopy research and technique.

[14]  A. Davis,et al.  ATOM-PROBE TOMOGRAPHIC STUDY OF THE THREE-DIMENSIONAL STRUCTURE OF PRESOLAR SILICON CARBIDE AND NANODIAMONDS AT ATOMIC RESOLUTION. , 2010 .

[15]  E. Scott,et al.  Iron meteorites: Crystallization, thermal history, parent bodies, and origin , 2009 .

[16]  P. Kotula,et al.  Thermal histories of IVA iron meteorites from transmission electron microscopy of the cloudy zone microstructure , 2009 .

[17]  H. Gail,et al.  Abundances of the elements in the solar system , 2009, 0901.1149.

[18]  B. Gorman,et al.  Hardware and Techniques for Cross- Correlative TEM and Atom Probe Analysis , 2008, Microscopy Today.

[19]  E. Scott,et al.  Metallographic cooling rates and origin of IVA iron meteorites , 2008 .

[20]  N. Dauphas Diffusion‐driven kinetic isotope effect of Fe and Ni during formation of the Widmanstätten pattern , 2007 .

[21]  J. Wasson,et al.  Formation of IIAB iron meteorites , 2007 .

[22]  D. Seidman,et al.  An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe-Cu based high-strength low-carbon steels , 2006 .

[23]  T. Kleine,et al.  Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites , 2005 .

[24]  Y. Nikolaev,et al.  Grain-Boundary Segregation of Phosphorus in Low-Alloy Steel , 2001 .

[25]  W. Hopfe,et al.  The metallographic cooling rate method revised: Application to iron meteorites and mesosiderites , 2001 .

[26]  Dieter Isheim,et al.  Analysis of Three-dimensional Atom-probe Data by the Proximity Histogram , 2000, Microscopy and Microanalysis.

[27]  David B. Williams,et al.  Low-temperature phase decomposition in metal from iron, stony-iron, and stony meteorites , 1997 .

[28]  J. Goldstein,et al.  A new empirical cooling rate indicator for meteorites based on the size of the cloudy zone of the metallic phases , 1997 .

[29]  David B. Williams,et al.  A revision of the Fe-Ni phase diagram at low temperatures (<400 °C) , 1996 .

[30]  R. Egerton,et al.  Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.

[31]  K. F. Russell,et al.  An APFIM investigation of a weathered region of the Santa Catharina meteorite , 1992 .

[32]  K. F. Russell,et al.  AN ATOM PROBE FIELD-ION MICROSCOPY STUDY OF PHASE SEPARATION IN THE TWIN CITY AND SANTA CATHARINA METEORITES , 1989 .

[33]  David B. Williams,et al.  Determination of the Fe−Ni phase diagram below 400°C , 1989, Metallurgical and Materials Transactions A.

[34]  T. Kaneko,et al.  MAGNETIC PROPERTY OF SmAg1-xInx , 1988 .

[35]  K. F. Russell,et al.  AN ATOM PROBE STUDY OF PHASE DECOMPOSITION IN THE CAPE YORK METEORITE , 1988 .

[36]  David B. Williams,et al.  Low temperature phase transformations in the metallic phases of iron and stony-iron meteorites , 1988 .

[37]  J. Goldstein,et al.  An evaluation of the methods to determine the cooling rates of iron meteorites , 1988 .

[38]  H. Grabke,et al.  Equilibrium segregation of phosphorus at grain boundaries of Fe–P, Fe–C–P, Fe–Cr–P, and Fe–Cr–C–P alloys , 1981 .

[39]  J. Goldstein,et al.  Redetermination of the Fe-rich portion of the Fe−Ni−Co phase diagram , 1977 .

[40]  J. Goldstein,et al.  The North Chilean hexahedrites: Variations in composition and structure , 1968 .

[41]  J. Goldstein The formation of the kamacite phase in metallic meteorites , 1965 .

[42]  A. Davis,et al.  Atom-Probe Tomographic Analyses of Presolar Silicon Carbide Grains and Meteoric Nanodiamonds – First Results on Silicon Carbide , 2010 .

[43]  J. Goldsteina,et al.  Iron meteorites : Crystallization , thermal history , parent bodies , and origin , 2009 .

[44]  Goddard,et al.  The Formation of the Kamacite Phase in Metallic Meteorites , 2007 .

[45]  David B. Williams,et al.  Transmission Electron Microscopy: A Textbook for Materials Science , 1996 .

[46]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[47]  N. Zaluzec Quantitative X-Ray Microanalysis: Instrumental Considerations and Applications to Materials Science , 1979 .