High temperature oxidation response of Al/Ce doped Mo–Si–B composites

[1]  M. Heilmaier,et al.  Correlation between microstructure and properties of fine grained Mo–Mo3Si–Mo5SiB2 alloys , 2014 .

[2]  D. Schliephake,et al.  Microstructure and creep properties of a near-eutectic directionally solidified multiphase Mo–Si–B alloy , 2014 .

[3]  D. Schliephake,et al.  High-temperature oxidation behavior of Mo–Si–B-based and Co–Re–Cr-based alloys , 2014 .

[4]  B. Yuan,et al.  Formation and oxidation resistance of germanium modified silicide coating on Nb based in situ composites , 2014 .

[5]  Kunming Pan,et al.  Fracture toughness and fracture mechanisms in Mo5SiB2 at ambient to elevated temperatures , 2013 .

[6]  D. Schliephake,et al.  Microstructural and micro-mechanical properties of Mo–Si–B alloyed with Y and La , 2013 .

[7]  Ping Zhang,et al.  Effect of Al content on the structure and oxidation resistance of Y and Al modified silicide coatings prepared on Nb–Ti–Si based alloy , 2013 .

[8]  Khushboo,et al.  Effect of Oxygen Partial Pressure on the Cyclic Oxidation Behavior of Mo76Si14B10 , 2013, Metallurgical and Materials Transactions A.

[9]  J. Das,et al.  Transient stage oxidation behavior of Mo76Si14B10 alloy at 1150 °C , 2013 .

[10]  R. Ritchie,et al.  Mo‐Si‐B Alloys for Ultrahigh‐Temperature Structural Applications , 2004, Advanced materials.

[11]  J. Das,et al.  Effect of Ce addition on the oxidation behaviour of Mo–Si–B–Al ultrafine composites at 1100 °C , 2011 .

[12]  J. Das,et al.  Oxidation behaviour of Mo–Si–B–(Al, Ce) ultrafine-eutectic dendrite composites in the temperature range of 500–700 °C , 2011 .

[13]  R. Sakidja,et al.  Oxidation Resistant Coatings for Ultrahigh Temperature Refractory Mo‐Base Alloys , 2009 .

[14]  R. Sakidja,et al.  Transient oxidation of Mo–Si–B alloys: Effect of the microstructure size scale , 2009 .

[15]  N. Prasad,et al.  Microstructure and mechanical behaviour of reaction hot pressed multiphase Mo–Si–B and Mo–Si–B–Al intermetallic alloys , 2006 .

[16]  J. Phalippou,et al.  Modeling the redox equilibrium of the Ce4+/Ce3+ couple in silicate glass by voltammetry , 2006 .

[17]  R. Mitra Mechanical behaviour and oxidation resistance of structural silicides , 2006 .

[18]  M. Kramer,et al.  Microstructure and oxidation behavior of Nb–Mo–Si–B alloys , 2006 .

[19]  X. Deschanels,et al.  X-ray absorption studies of borosilicate glasses containing dissolved actinides or surrogates , 2005 .

[20]  J. Svensson,et al.  Oxidation behaviour of a MoSi2-based composite in different atmospheres in the low temperature range (400–550 °C) , 2004 .

[21]  D. R. Johnson,et al.  Oxidation behavior of multiphase Mo–Si–B alloys , 2004 .

[22]  F. Boey,et al.  Mullite phase formation in oxide mixtures in the presence of Y2O3, La2O3 and CeO2 , 2004 .

[23]  M. Kramer,et al.  Oxidation Behavior of Mo-Si-B Alloys in Wet Air , 2004 .

[24]  D. Dimiduk,et al.  Mo-Si-B Alloys: Developing a Revolutionary Turbine-Engine Material , 2003 .

[25]  E. Summers,et al.  Oxidation behavior of extruded Mo5Si3Bx–MoSi2–MoB intermetallics from 600°–1600 °C , 2002 .

[26]  D. Dimiduk,et al.  Oxidation behavior of αMo–Mo3Si–Mo5SiB2 (T2) three phase system , 2002 .

[27]  S. Roy,et al.  Environmental Degradation of Metals , 2001 .

[28]  H. Schneider,et al.  Reaction Sequence and Microstructrual Development of CeO2‐Doped Reaction‐Bonded Mullite , 1999 .

[29]  B. Pint On the formation of interfacial and internal voids inα-Al2O3 scales , 1997 .

[30]  Seong‐Hyeon Hong,et al.  Anisotropic grain growth in seeded and B2O3-doped diphasic mullite gels , 1996 .

[31]  K. Nagata,et al.  Effect of third elements on the pesting suppression of Mo-Si-X intermetallics (X = Al, Ta, Ti, Zr and Y) , 1996 .

[32]  J. Stringer,et al.  The effect of reactive element additions on the selective oxidation, growth and adhesion of chromia scales , 1995 .

[33]  H. Schreiber An electrochemical series of redox couples in silicate melts: A review and applications to geochemistry , 1987 .