Two-Dimensional Growth of CdSe Nanocrystals, from Nanoplatelets to Nanosheets

We report the continuous lateral extension of cadmium selenide nanoplatelets into nanosheets using continuous injection of precursors at high temperature. We show that we can obtain CdSe nanosheets with lateral dimensions up to 700 nm and a well-defined thickness that can be tuned with atomic precision. When the nanosheets’ lateral size increases, they roll on themselves to form nanoscrolls that can unroll upon surface modification. The final geometry of the nanosheets can be tuned to different morphologies using precursors that favor the growth of specific crystal facets. We provide a detailed study of the CdSe nanosheets growth and its optimization for three different thicknesses.

[1]  B. Korgel,et al.  Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. , 2003, Journal of the American Chemical Society.

[2]  Dmitri V Talapin,et al.  Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS3(2-), OH-, and NH2- as surface ligands. , 2011, Journal of the American Chemical Society.

[3]  W. Buhro,et al.  Morphology control of cadmium selenide nanocrystals: insights into the roles of di-n-octylphosphine oxide (DOPO) and ucid (DOPA). , 2012, Journal of the American Chemical Society.

[4]  Benoit Dubertret,et al.  Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. , 2008, Journal of the American Chemical Society.

[5]  Jung Ho Yu,et al.  Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. , 2009, Angewandte Chemie.

[6]  Dimitri D. Vaughn,et al.  A precursor-limited nanoparticle coalescence pathway for tuning the thickness of laterally-uniform colloidal nanosheets: the case of SnSe. , 2011, ACS nano.

[7]  Dimitri D. Vaughn,et al.  Single-crystal colloidal nanosheets of GeS and GeSe. , 2010, Journal of the American Chemical Society.

[8]  Jung Ho Yu,et al.  Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. , 2006, Journal of the American Chemical Society.

[9]  J. Als-Nielsen,et al.  Elements of Modern X-ray Physics: Als-Nielsen/Elements , 2011 .

[10]  Hyunhyub Ko,et al.  Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors , 2010, Nature.

[11]  D. Y. Yoon,et al.  Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. , 2012, Nano letters.

[12]  J. Furdyna,et al.  Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons. , 2010, Nature materials.

[13]  Leroy L. Chang,et al.  Exciton binding energy in quantum wells , 1982 .

[14]  C. Tanford Micelle shape and size , 1972 .

[15]  B. Dubertret,et al.  Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. , 2011, Journal of the American Chemical Society.

[16]  E. Rizzardo,et al.  High Activity Phosphine-Free Selenium Precursor Solution for Semiconductor Nanocrystal Growth , 2010 .

[17]  Yongan Yang,et al.  Synthesis of CdSe and CdTe nanocrystals without precursor injection. , 2005, Angewandte Chemie.

[18]  Benoit Dubertret,et al.  Core/shell colloidal semiconductor nanoplatelets. , 2012, Journal of the American Chemical Society.

[19]  P. C. Gibbons,et al.  Lamellar assembly of cadmium selenide nanoclusters into quantum belts. , 2011, Journal of the American Chemical Society.

[20]  Haiyan Qin,et al.  Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties , 2012, Nano Research.

[21]  Jung Ho Yu,et al.  Dimension-controlled synthesis of CdS nanocrystals: from 0D quantum dots to 2D nanoplates. , 2012, Small.

[22]  P. C. Gibbons,et al.  Origin of high photoluminescence efficiencies in CdSe quantum belts. , 2010, Nano letters.

[23]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[24]  K. Park,et al.  Synthesis, optical properties, and self-assembly of ultrathin hexagonal In2S3 nanoplates. , 2006, Angewandte Chemie.

[25]  L. Olivi,et al.  Physico-chemical control over the single- or double-wall structure of aluminogermanate imogolite-like nanotubes. , 2012, Journal of the American Chemical Society.

[26]  Eunji Sim,et al.  Ultrathin zirconium disulfide nanodiscs. , 2011, Journal of the American Chemical Society.

[27]  Christopher B. Murray,et al.  Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface , 2010, Nature.

[28]  Christopher M. Evans,et al.  Mysteries of TOPSe revealed: insights into quantum dot nucleation. , 2010, Journal of the American Chemical Society.

[29]  N. Pradhan,et al.  An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. , 2005, Journal of the American Chemical Society.

[30]  B. Dubertret,et al.  Colloidal nanoplatelets with two-dimensional electronic structure. , 2011, Nature materials.

[31]  Raffaella Buonsanti,et al.  Exceptionally mild reactive stripping of native ligands from nanocrystal surfaces by using Meerwein's salt. , 2012, Angewandte Chemie.

[32]  A Paul Alivisatos,et al.  Device-scale perpendicular alignment of colloidal nanorods. , 2010, Nano letters.

[33]  Feng Liu,et al.  Nanomechanical architecture of semiconductor nanomembranes. , 2011, Nanoscale.

[34]  Taeghwan Hyeon,et al.  Synthesis of monodisperse spherical nanocrystals. , 2007, Angewandte Chemie.

[35]  Xiaogang Peng,et al.  Size/shape-controlled synthesis of colloidal CdSe quantum disks: ligand and temperature effects. , 2011, Journal of the American Chemical Society.

[36]  Hui Zhao,et al.  Synthesis and optoelectronic properties of two-dimensional FeS2 nanoplates. , 2012, ACS applied materials & interfaces.

[37]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.