Stacked Bioglass/TiO2 nanocoatings on titanium substrate for enhanced osseointegration and its electrochemical corrosion studies

Abstract We demonstrate an approach for Bioglass/TiO 2 nanocomposites coatings onto the TiO 2 nano-surfaces formed by etching of CP-Ti. The coated surface is further covered with Bioglass fibres to enhance the rate of apatite formation. Different concentrations of Bioglass/TiO 2 composites are prepared by changing the TiO 2 concentration. The coating is performed by electrophoretic deposition technique, and it shows less concentration of TiO 2 gives higher adhesion to the substrates. The in vitro electrochemical corrosion and immersion studies confirm that the lower concentrations of TiO 2 containing Bioglass/TiO 2 composites coated sample possesses higher corrosion resistance and bio-mineralization that is highly suitable for bone osseointegration applications.

[1]  Peter Fratzl,et al.  Collagen : structure and mechanics , 2008 .

[2]  D. Mangalaraj,et al.  Controlled growth and investigations on the morphology and mechanical properties of hydroxyapatite/titania nanocomposite thin films , 2010 .

[3]  Hae-Won Kim,et al.  Hydroxyapatite-TiO2 Hybrid Coating on Ti Implants , 2006, Journal of Biomaterials Applications.

[4]  W. Stark,et al.  Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites , 2010, Journal of The Royal Society Interface.

[5]  M. Zakeri,et al.  Mechanical properties of TiO2-hydroxyapatite nanostructured coatings on Ti-6Al-4V substrates by APS method , 2013, International Journal of Minerals, Metallurgy, and Materials.

[6]  P. Sharkey,et al.  Why Are Total Knee Arthroplasties Failing Today? , 2002 .

[7]  P Herberts,et al.  Prognosis of total hip replacement: A Swedish multicenter study of 4,664 revisions , 1990 .

[8]  Larry L. Hench,et al.  The story of Bioglass® , 2006, Journal of materials science. Materials in medicine.

[9]  Byong-Taek Lee,et al.  Fabrication of bioglass infiltrated Al2O3–(m-ZrO2) composites , 2009, Journal of materials science. Materials in medicine.

[10]  Edgar Dutra Zanotto,et al.  Efficacy of a bioactive glass-ceramic (Biosilicate) in the maintenance of alveolar ridges and in osseointegration of titanium implants. , 2010, Clinical oral implants research.

[11]  G. Jell,et al.  Gene activation by bioactive glasses , 2006, Journal of materials science. Materials in medicine.

[12]  P. Chu,et al.  Thermal oxidation of titanium: Evaluation of corrosion resistance as a function of cooling rate , 2013 .

[13]  Wen‐Cheng Chen,et al.  Effects of bioglass powders with and without mesoporous structures on fibroblast and osteoblast responses , 2014 .

[14]  Manoj Komath,et al.  Pulsed laser deposition of hydroxyapatite on titanium substrate with titania interlayer , 2011, Journal of materials science. Materials in medicine.

[15]  I. Mihailescu,et al.  Bioglass thin films for biomimetic implants , 2009 .

[16]  S. Balakumar,et al.  Efficient sunlight-driven photocatalytic activity of chemically bonded GNS–TiO2 and GNS–ZnO heterostructures , 2014 .

[17]  H. Farnoush,et al.  Fabrication and characterization of nano-HA-45S5 bioglass composite coatings on calcium-phosphate containing micro-arc oxidized CP-Ti substrates , 2015 .

[18]  Joon B. Park Biomaterials:An Introduction , 1992 .

[19]  R. Reis,et al.  Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field , 2013 .

[20]  A R Boccaccini,et al.  Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. , 2011, Nanomedicine : nanotechnology, biology, and medicine.

[21]  Aldo R Boccaccini,et al.  45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. , 2006, Biomaterials.

[22]  S. Singh,et al.  Electrochemical noise studies of the effect of nitrogen on pitting corrosion resistance of high nitrogen austenitic stainless steels , 2011 .

[23]  A. Palmieri,et al.  Genetic effect of anatase on osteoblast-like cells. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[24]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[25]  F. Carinci,et al.  Bacterial adhesion on commercially pure titanium and anatase-coated titanium healing screws: an in vivo human study. , 2010, Journal of periodontology.

[26]  Max Heiland,et al.  Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials. , 2012, Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery.

[27]  Paulo G Coelho,et al.  Classification of osseointegrated implant surfaces: materials, chemistry and topography. , 2010, Trends in biotechnology.

[28]  L L Hench,et al.  Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths. , 2004, Journal of biomedical materials research. Part A.

[29]  A. R. Boccaccini,et al.  The surface functionalization of 45S5 Bioglass®-based glass-ceramic scaffolds and its impact on bioactivity , 2006, Journal of materials science. Materials in medicine.

[30]  A. Bandyopadhyay,et al.  Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[31]  A. Testino,et al.  Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. a systematic approach. , 2007, Journal of the American Chemical Society.

[32]  K. Seah,et al.  The influence of pore morphology on corrosion , 1998 .

[33]  Silvia Licoccia,et al.  Fabrication of bioactive glass-ceramic foams mimicking human bone portions for regenerative medicine. , 2008, Acta biomaterialia.

[34]  Eduardo Saiz,et al.  Bioactive glass coatings for orthopedic metallic implants , 2003 .

[35]  A. Singh,et al.  Ti based biomaterials, the ultimate choice for orthopaedic implants – A review , 2009 .

[36]  R. Streicher,et al.  Nanosurfaces and nanostructures for artificial orthopedic implants. , 2007, Nanomedicine.

[37]  W. Maloney,et al.  Reasons for Revision Hip Surgery: A Retrospective Review , 2004, Clinical orthopaedics and related research.

[38]  Geetha Manivasagam,et al.  Studies on corrosion and wear behavior of submicrometric diamond coated Ti alloys , 2013 .

[39]  U. Kamachi Mudali,et al.  Preparation and characterisation of electrophoretically deposited hydroxyapatite coatings on type 316L stainless steel , 2003 .

[40]  D. Vashaee,et al.  Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry , 2013, International journal of nanomedicine.

[41]  C. Ding,et al.  Characterization of plasma-sprayed hydroxyapatite/TiO2 composite coatings , 2000 .

[42]  Laxmidhar Besra,et al.  A review on fundamentals and applications of electrophoretic deposition (EPD) , 2007 .

[43]  H. Rack,et al.  Titanium alloys in total joint replacement--a materials science perspective. , 1998, Biomaterials.

[44]  C. Wen,et al.  Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. , 2009, Acta biomaterialia.