A regularized k-means and multiphase scale segmentation

We propose a data clustering model reduced from variational approach. This new clustering model, a regularized k-means, is an extension from the classical k-means model. It uses the sum-of-squares error for assessing fidelity, and the number of data in each cluster is used as a regularizer. The model automatically gives a reasonable number of clusters by a choice of a parameter. We explore various properties of this classification model and present different numerical results. This model is motivated by an application to scale segmentation. A typical Mumford-Shah-based image segmentation is driven by the intensity of objects in a given image, and we consider image segmentation using additional scale information in this paper. Using the scale of objects, one can further classify objects in a given image from using only the intensity value. The scale of an object is not a local value, therefore the procedure for scale segmentation needs to be separated into two steps: multiphase segmentation and scale clustering. The first step requires a reliable multiphase segmentation where we applied unsupervised model, and apply a regularized k-means for a fast automatic data clustering for the second step. Various numerical results are presented to validate the model.

[1]  F. Gibou A fast hybrid k-means level set algorithm for segmentation , 2005 .

[2]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[3]  Geoffrey C. Fox,et al.  A deterministic annealing approach to clustering , 1990, Pattern Recognit. Lett..

[4]  Jiming Peng,et al.  A Cutting Algorithm for the Minimum Sum-of-Squared Error Clustering , 2005, SDM.

[5]  T. Chan,et al.  Multiple level set methods with applications for identifying piecewise constant functions , 2004 .

[6]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[7]  Yuxiao Hu,et al.  Discriminant Analysis on Embedded Manifold , 2004, ECCV.

[8]  Luminita A. Vese,et al.  Energy Minimization Based Segmentation and Denoising Using a Multilayer Level Set Approach , 2005, EMMCVPR.

[9]  Yoon Mo Jung,et al.  Multiphase Image Segmentation via Modica-Mortola Phase Transition , 2007, SIAM J. Appl. Math..

[10]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[11]  Julie Delon,et al.  A Nonparametric Approach for Histogram Segmentation , 2007, IEEE Transactions on Image Processing.

[12]  Sadaaki Miyamoto,et al.  Fuzzy c-means as a regularization and maximum entropy approach , 1997 .

[13]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[14]  A. Figalli,et al.  A note on Cheeger sets , 2009 .

[15]  Zhuowen Tu,et al.  Image Segmentation by Data-Driven Markov Chain Monte Carlo , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Michael K. Ng,et al.  Agglomerative Fuzzy K-Means Clustering Algorithm with Selection of Number of Clusters , 2008, IEEE Transactions on Knowledge and Data Engineering.

[17]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[18]  Tony F. Chan,et al.  Active Contours without Edges for Vector-Valued Images , 2000, J. Vis. Commun. Image Represent..

[19]  Tony F. Chan,et al.  Unsupervised Multiphase Segmentation: A Phase Balancing Model , 2010, IEEE Transactions on Image Processing.

[20]  Bin Luo,et al.  Local Scale Measure from the Topographic Map and Application to Remote Sensing Images , 2009, Multiscale Model. Simul..

[21]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[22]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[23]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Yan Nei Law,et al.  Semi-supervised subspace learning for Mumford-Shah model based texture segmentation. , 2010, Optics express.

[25]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[27]  N. Karayiannis MECA: maximum entropy clustering algorithm , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[28]  David G. Stork,et al.  Pattern Classification , 1973 .

[29]  George C. Tseng,et al.  Penalized and weighted K-means for clustering with scattered objects and prior information in high-throughput biological data , 2007, Bioinform..

[30]  Xue-Cheng Tai,et al.  A variant of the level set method and applications to image segmentation , 2006, Math. Comput..

[31]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[32]  Tony F. Chan,et al.  Scale Recognition, Regularization Parameter Selection, and Meyer's G Norm in Total Variation Regularization , 2006, Multiscale Model. Simul..

[33]  Ruhan He,et al.  Balanced K-Means Algorithm for Partitioning Areas in Large-Scale Vehicle Routing Problem , 2009, 2009 Third International Symposium on Intelligent Information Technology Application.

[34]  A. Chambolle,et al.  Uniqueness of the Cheeger set of a convex body , 2007, Pacific Journal of Mathematics.

[35]  Xavier Bresson,et al.  Local Histogram Based Segmentation Using the Wasserstein Distance , 2009, International Journal of Computer Vision.

[36]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[37]  Xavier Descombes,et al.  An unsupervised clustering method using the entropy minimization , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[38]  Liansheng Tan,et al.  A Balanced Parallel Clustering Protocol for Wireless Sensor Networks Using K-Means Techniques , 2008, 2008 Second International Conference on Sensor Technologies and Applications (sensorcomm 2008).

[39]  M. Narasimha Murty,et al.  Genetic K-means algorithm , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[40]  Maurice K. Wong,et al.  Algorithm AS136: A k-means clustering algorithm. , 1979 .