Local Group dSph radio survey with ATCA (III): constraints on particle dark matter

We performed a deep search for radio synchrotron emissions induced by weakly interacting massive particles (WIMPs) annihilation or decay in six dwarf spheroidal (dSph) galaxies of the Local Group. Observations were conducted with the Australia Telescope Compact Array (ATCA) at 16 cm wavelength, with an rms sensitivity better than 0.05 mJy/beam in each field. In this work, we first discuss the uncertainties associated with the modeling of the expected signal, such as the shape of the dark matter (DM) profile and the dSph magnetic properties. We then investigate the possibility that point-sources detected in the proximity of the dSph optical center might be due to the emission from a DM cuspy profile. No evidence for an extended emission over a size of few arcmin (which is the DM halo size) has been detected. We present the associated bounds on the WIMP parameter space for different annihilation/decay final states and for different astrophysical assumptions. If the confinement of electrons and positrons in the dSph is such that the majority of their power is radiated within the dSph region, we obtain constraints on the WIMP annihilation rate which are well below the thermal value for masses up to few TeV. On the other hand, for conservative assumptions on the dSph magnetic properties, the bounds can be dramatically relaxed. We show however that, within the next 10 years and regardless of the astrophysical assumptions, it will be possible to progressively close in on the full parameter space of WIMPs by searching for radio signals in dSphs with SKA and its precursors.

[1]  A. Chilingarian,et al.  Upper Limit for γ-Ray Emission above 140 GeV from the Dwarf Spheroidal Galaxy Draco , 2007, 0711.2574.

[2]  A. Quirrenbach,et al.  H.E.S.S. constraints on dark matter annihilations towards the sculptor and carina dwarf galaxies , 2010, 1012.5602.

[3]  J. Read,et al.  Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future gamma-ray observatories - I. The classical dSphs , 2011, 1104.0412.

[4]  Michael S. Turner,et al.  The Early Universe , 1990 .

[5]  H. Krawczynski,et al.  A Search for Dark Matter Annihilation with the Whipple 10 m Telescope , 2008, 0801.1708.

[6]  M. Massardi,et al.  Local Group dSph radio survey with ATCA – II. Non-thermal diffuse emission , 2014, 1407.5482.

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  B. Flaugher The Dark Energy Survey , 2005 .

[9]  B. Willman,et al.  Bounds on dark matter properties from radio observations of Ursa Major II using the Green Bank Telescope , 2013, 1308.4979.

[10]  T. Jeltema,et al.  Dark matter detection with hard X-ray telescopes , 2011, 1108.1407.

[11]  P. J. Teuben,et al.  A retrospective view of Miriad , 1995 .

[12]  E. Łokas Velocity dispersions of dwarf spheroidal galaxies: dark matter versus MOND , 2001 .

[13]  J. Grcevich,et al.  H i IN LOCAL GROUP DWARF GALAXIES AND STRIPPING BY THE GALACTIC HALO , 2009, 0901.4975.

[14]  R. Guenette,et al.  VERITAS SEARCH FOR VHE GAMMA-RAY EMISSION FROM DWARF SPHEROIDAL GALAXIES , 2010, 1006.5955.

[15]  F. Queiroz,et al.  Effect of Black Holes in Local Dwarf Spheroidal Galaxies on Gamma-Ray Constraints on Dark Matter Annihilation , 2014, 1406.2424.

[16]  CNRSIN2p3,et al.  Direct constraints on minimal supersymmetry from Fermi-LAT observations of the dwarf galaxy Segue 1 , 2009, 0909.3300.

[17]  Michele Doro,et al.  Dark matter signals from Draco and Willman 1: prospects for MAGIC II and CTA , 2008, 0809.2269.

[18]  J. A. Hinton,et al.  DARK MATTER IN THE CLASSICAL DWARF SPHEROIDAL GALAXIES: A ROBUST CONSTRAINT ON THE ASTROPHYSICAL FACTOR FOR γ-RAY FLUX CALCULATIONS , 2011, 1104.0411.

[19]  P. Munar-Adrover,et al.  Searches for dark matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope , 2011, 1103.0477.

[20]  K. Spekkens,et al.  A DEEP SEARCH FOR EXTENDED RADIO CONTINUUM EMISSION FROM DWARF SPHEROIDAL GALAXIES: IMPLICATIONS FOR PARTICLE DARK MATTER , 2013, 1301.5306.

[21]  Michael S. Bessell,et al.  SkyMapper and the Southern Sky Survey , 2008 .

[22]  Heidelberg,et al.  A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites , 2008, 0805.2945.

[23]  T. Weekes,et al.  Erratum: VERITAS deep observations of the dwarf spheroidal galaxy Segue 1 (Physical Review D - Particles, Fields, Gravitation and Cosmology 85:062001 (2012)) , 2015 .

[24]  M. Massardi,et al.  Local Group dSph radio survey with ATCA – I: observations and background sources , 2014, 1407.5479.

[25]  P. Salucci,et al.  Extracting limits on Dark Matter annihilation from gamma-ray observations towards dwarf spheroidal galaxies , 2012, 1203.2954.

[26]  HESS Collaboration F. Aharonian,et al.  A SEARCH FOR A DARK MATTER ANNIHILATION SIGNAL TOWARD THE CANIS MAJOR OVERDENSITY WITH H.E.S.S. , 2008, 0809.3894.

[27]  A. Geringer-Sameth,et al.  Exclusion of canonical weakly interacting massive particles by joint analysis of Milky Way dwarf galaxies with data from the Fermi Gamma-Ray Space Telescope. , 2011, Physical review letters.

[28]  H I in Local Group Dwarf Galaxies and Stripping by the Galactic Halo , 2009 .

[29]  Yasushi Fukazawa,et al.  OBSERVATIONS OF MILKY WAY DWARF SPHEROIDAL GALAXIES WITH THE FERMI-LARGE AREA TELESCOPE DETECTOR AND CONSTRAINTS ON DARK MATTER MODELS , 2010 .

[30]  B. Willman,et al.  A Pair of Boötes: A New Milky Way Satellite , 2007, 0705.1378.

[31]  G. Martinez A robust determination of Milky Way satellite properties using hierarchical mass modelling , 2013, 1309.2641.

[32]  S. Majewski,et al.  THE SHAPES OF MILKY WAY SATELLITES: LOOKING FOR SIGNATURES OF TIDAL STIRRING , 2011, 1112.5336.

[33]  E. al.,et al.  Observations of the Sagittarius dwarf galaxy by the HESS experiment and search for a dark matter signal , 2007, 0711.2369.

[34]  R. Beck,et al.  Magnetic fields in Local Group dwarf irregulars , 2011, 1101.4647.

[35]  P. Ullio,et al.  Multiwavelength signals of dark matter annihilations at the Galactic center , 2008, 0802.0234.

[36]  Gianfranco Bertone,et al.  Particle Dark Matter: List of contributors , 2010 .

[37]  S. Colafrancesco,et al.  Detecting dark matter WIMPs in the Draco dwarf: A multiwavelength perspective , 2007 .

[38]  A. Noutsos,et al.  Observations of the Sagittarius dwarf galaxy by the HESS experiment and search for a dark matter signal , 2008 .

[39]  L. A. Antonelli,et al.  UPPER LIMITS ON THE VHE GAMMA-RAY EMISSION FROM THE WILLMAN 1 SATELLITE GALAXY WITH THE MAGIC TELESCOPE , 2008, 0810.3561.

[40]  S. C. Keller,et al.  The SkyMapper Telescope and The Southern Sky Survey , 2007, Publications of the Astronomical Society of Australia.

[41]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[42]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[43]  E. Lokas Velocity dispersions of dwarf spheroidal galaxies: dark matter versus MOND , 2001, astro-ph/0107479.

[44]  J. Chiang,et al.  Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope , 2013, 1310.0828.

[45]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[46]  N. W. Evans,et al.  A SPECTROSCOPIC CONFIRMATION OF THE BOOTES II DWARF SPHEROIDAL , 2008, 0809.0700.

[47]  A. Geringer-Sameth,et al.  Exclusion of canonical weakly interacting massive particles by joint analysis of Milky Way dwarf galaxies with data from the Fermi Gamma-Ray Space Telescope. , 2011, Physical review letters.

[48]  B. Willman,et al.  Boötes II ReBoöted: An MMT/MegaCam Study of an Ultrafaint Milky Way Satellite , 2007, 0712.3054.

[49]  T Glanzman,et al.  Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. , 2011, Physical review letters.

[50]  C. Weniger,et al.  Decaying dark matter in light of the PAMELA and Fermi LAT data , 2009, 0906.1571.

[51]  R. Essig,et al.  Bounds on Cross-sections and Lifetimes for Dark Matter Annihilation and Decay into Charged Leptons from Gamma-ray Observations of Dwarf Galaxies , 2009, 0902.4750.

[52]  Sezione di Roma,et al.  Neutralinos and the Origin of Radio Halos in Clusters of Galaxies , 2000, astro-ph/0008127.

[53]  M. Fairbairn,et al.  On the use of X-ray and γ-ray telescopes for identifying the origin of electrons and positrons observed by ATIC, Fermi, and PAMELA , 2010, 1003.1113.

[54]  M. Geha,et al.  Indirect Dark Matter Detection Limits from the Ultra-Faint Milky Way Satellite Segue 1 , 2010, 1007.4199.

[55]  C. Carilli,et al.  Science with the Square Kilometer Array , 2004, astro-ph/0409274.

[56]  Spain,et al.  Optimized DarkMatter Searches in Deep Observations of Segue 1 with MAGIC , 2013 .

[57]  M. Perelstein,et al.  Dark matter identification with gamma rays from dwarf galaxies , 2010, 1007.0018.

[58]  T. Jeltema,et al.  Searching for Dark Matter with X-Ray Observations of Local Dwarf Galaxies , 2008, 0805.1054.

[59]  T. Weekes,et al.  VERITAS deep observations of the dwarf spheroidal galaxy Segue 1 , 2012, 1202.2144.

[60]  Changhong Li,et al.  The scale invariant power spectrum of the primordial curvature perturbations from the coupled scalar tachyon bounce cosmos , 2014 .

[61]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[62]  C. Cesarsky Cosmic-Ray Confinement in the Galaxy , 1980 .

[63]  Ericka Stricklin-Parker,et al.  Ann , 2005 .