A Collection of SAR Methodologies for Monitoring Wetlands

Wetlands are an important natural resource that requires monitoring. A key step in environmental monitoring is to map the locations and characteristics of the resource to better enable assessment of change over time. Synthetic Aperture Radar (SAR) systems are helpful in this way for wetland resources because their data can be used to map and monitor changes in surface water extent, saturated soils, flooded vegetation, and changes in wetland vegetation cover. We review a few techniques to demonstrate SAR capabilities for wetland monitoring, including the commonly used method of grey-level thresholding for mapping surface water and highlighting changes in extent, and approaches for polarimetric decompositions to map flooded vegetation and changes from one class of land cover to another. We use the Curvelet-based change detection and the Wishart-Chernoff Distance approaches to show how they substantially improve mapping of flooded vegetation and flagging areas of change, respectively. We recommend that the increasing availability SAR data and the proven ability of these data to map various components of wetlands mean SAR should be considered as a critical component of a wetland monitoring system.

[1]  Mohammed Dabboor,et al.  Change Detection with Compact Polarimetric SAR for Monitoring Wetlands , 2015 .

[2]  Brian Brisco,et al.  Detecting Emergence, Growth, and Senescence of Wetland Vegetation with Polarimetric Synthetic Aperture Radar (SAR) Data , 2014 .

[3]  Andreas Schmitt,et al.  An Innovative Curvelet-only-Based Approach for Automated Change Detection in Multi-Temporal SAR Imagery , 2014, Remote. Sens..

[4]  Brian Brisco,et al.  RADARSAT-2 Beam Mode Selection for Surface Water and Flooded Vegetation Mapping , 2014 .

[5]  Andreas Schmitt,et al.  Wetland Monitoring Using the Curvelet-Based Change Detection Method on Polarimetric SAR Imagery , 2013 .

[6]  Waldir R. Paradella,et al.  Evaluation of Digital Classification of Polarimetric SAR Data for Iron-Mineralized Laterites Mapping in the Amazon Region , 2013, Remote. Sens..

[7]  Shao Yun,et al.  Compact polarimetry assessment for rice and wetland mapping , 2013 .

[8]  J. Yackel,et al.  Comparing matrix distance measures for unsupervised POLSAR data classification of sea ice based on agglomerative clustering , 2013 .

[9]  Mohammed Dabboor,et al.  An Unsupervised Classification Approach for Polarimetric SAR Data Based on the Chernoff Distance for Complex Wishart Distribution , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[10]  R. Raney,et al.  The m‐chi decomposition of hybrid dual‐polarimetric radar data with application to lunar craters , 2012 .

[11]  Annett Bartsch,et al.  Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes , 2012, Remote. Sens..

[12]  P. Manjusree,et al.  Optimization of threshold ranges for rapid flood inundation mapping by evaluating backscatter profiles of high incidence angle SAR images , 2012, International Journal of Disaster Risk Science.

[13]  H. Winsemius,et al.  Automated global water mapping based on wide-swath orbital synthetic-aperture radar , 2012 .

[14]  F. Aires,et al.  Changes in land surface water dynamics since the 1990s and relation to population pressure , 2012 .

[15]  Brian Brisco,et al.  The integration of optical, topographic, and radar data for wetland mapping in northern Minnesota , 2011 .

[16]  B. Brisco,et al.  Evaluation of C-band polarization diversity and polarimetry for wetland mapping , 2011 .

[17]  Paris W. Vachon,et al.  C-Band Cross-Polarization Wind Speed Retrieval , 2011, IEEE Geoscience and Remote Sensing Letters.

[18]  Nazzareno Pierdicca,et al.  Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation , 2011 .

[19]  E. Barbier,et al.  The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm , 2011 .

[20]  Nazzareno Pierdicca,et al.  An algorithm for operational flood mapping from Synthetic Aperture Radar (SAR) data using fuzzy logic , 2011 .

[21]  P. Bates,et al.  Timely Low Resolution SAR Imagery To Support Floodplain Modelling: a Case Study Review , 2011 .

[22]  J. Ragle,et al.  IUCN Red List of Threatened Species , 2010 .

[23]  B. Brisco,et al.  Polarimetric change detection for wetlands , 2010 .

[24]  Charles R. Lane,et al.  Calculating the Ecosystem Service of Water Storage in Isolated Wetlands using LiDAR in North Central Florida, USA , 2010, Wetlands.

[25]  Birgit Wessel,et al.  Surface Water Body Detection in High-Resolution TerraSAR-X Data using Active Contour Models , 2010 .

[26]  R. Clark,et al.  Trends in agricultural impact and recovery of wetlands in prairie Canada. , 2010, Ecological applications : a publication of the Ecological Society of America.

[27]  Heather McNairn,et al.  Compact polarimetry overview and applications assessment , 2010 .

[28]  Andreas Schmitt,et al.  CURVELET APPROACH FOR SAR IMAGE DENOISING, STRUCTURE ENHANCEMENT, AND CHANGE DETECTION , 2009 .

[29]  Sandro Martinis,et al.  Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data , 2009 .

[30]  Brian Brisco,et al.  A semi-automated tool for surface water mapping with RADARSAT-1 , 2009 .

[31]  Sébastien Angélliaume,et al.  The Compact Polarimetry Alternative for Spaceborne SAR at Low Frequency , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[32]  T. Dixon,et al.  Space-Based Detection of Wetlands' Surface Water Level Changes from L-Band SAR Interferometry , 2008 .

[33]  Brian Brisco,et al.  Water resource applications with RADARSAT-2 – a preview , 2008, Int. J. Digit. Earth.

[34]  Richard A. Fournier,et al.  Towards a strategy to implement the Canadian Wetland Inventory using satellite remote sensing , 2007 .

[35]  R. Olsen Introduction to Remote Sensing , 2007 .

[36]  R. Keith Raney,et al.  Hybrid-Polarity SAR Architecture , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[37]  Ridha Touzi,et al.  Wetland Characterization using Polarimetric RADARSAT-2 Capability , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[38]  J. Henry,et al.  Envisat multi‐polarized ASAR data for flood mapping , 2006 .

[39]  Alain Pietroniro,et al.  Towards operational monitoring of a northern wetland using geomatics-based techniques , 2005 .

[40]  G. Canziani,et al.  Esteros del Ibera: hydrometeorological and hydrological characterization , 2005 .

[41]  Marko Mäkynen,et al.  Open water detection from Baltic Sea ice Radarsat-1 SAR imagery , 2005, IEEE Geoscience and Remote Sensing Letters.

[42]  D. Lettenmaier,et al.  Measuring surface water from space , 2004 .

[43]  B. Scheuchl,et al.  Potential of RADARSAT-2 data for operational sea ice monitoring , 2004 .

[44]  J. S. Lee,et al.  A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction , 2004 .

[45]  C. Barbosa,et al.  Dual-season mapping of wetland inundation and vegetation for the central Amazon basin , 2003 .

[46]  S. Schneider,et al.  Fingerprints of global warming on wild animals and plants , 2003, Nature.

[47]  P. Townsend,et al.  A synthetic aperture radar–based model to assess historical changes in lowland floodplain hydroperiod , 2002 .

[48]  W. E. Watt,et al.  Critical issues for stormwater ponds: learning from a decade of research. , 2002, Water science and technology : a journal of the International Association on Water Pollution Research.

[49]  Philip A. Townsend,et al.  Relationships between forest structure and the detection of flood inundation in forested wetlands using C-band SAR , 2002 .

[50]  Maycira Costa,et al.  Relationship between macrophyte stand variables and radar backscatter at L and C band, Tucuruí reservoir, Brazil , 2002 .

[51]  Haydee Karszenbaum,et al.  Influence of Flood Conditions and Vegetation Status on the Radar Backscatter of Wetland Ecosystems , 2001 .

[52]  Saravanamuthu Vigneswaran,et al.  Constructed Wetlands for Wastewater Treatment , 2001 .

[53]  T. Wigley,et al.  Climates of the Twentieth and Twenty-First Centuries Simulated by the NCAR Climate System Model , 2001 .

[54]  Lawrence W. Martz,et al.  Multisensor Hydrologic Assessment of a Freshwater Wetland , 2001 .

[55]  Nicolas Baghdadi,et al.  Evaluation of C-band SAR data for wetlands mapping , 2001 .

[56]  Kevin B. Smith,et al.  Analysis of space-borne SAR data for wetland mapping in Virginia riparian ecosystems , 2001 .

[57]  D. Mason,et al.  Flood boundary delineation from Synthetic Aperture Radar imagery using a statistical active contour model , 2001 .

[58]  W. Mitsch,et al.  The value of wetlands: importance of scale and landscape setting. , 2000 .

[59]  G. Boer,et al.  A transient climate change simulation with greenhouse gas and aerosol forcing: projected climate to the twenty-first century , 2000 .

[60]  M. Finlayson,et al.  Monitoring Wetlands Inundation Patterns using RADARSAT Multitemporal Data , 2000 .

[61]  Alberto Refice,et al.  Comparison of SAR amplitude vs. coherence flood detection methods - a GIS application , 2000 .

[62]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[63]  Laurence C. Smith,et al.  Control on sediment and organic carbon delivery to the Arctic Ocean revealed with space-borne synthetic aperture radar: Ob' River, Siberia , 1998 .

[64]  A. Pietroniro,et al.  Radarsat flood mapping in the Peace-Athabasca Delta, Canada , 1998 .

[65]  L. Smith Satellite remote sensing of river inundation area, stage, and discharge: a review , 1997 .

[66]  George M. Hornberger,et al.  Effects of Climate Change on Freshwater Ecosystems of the South-Eastern United States and the Gulf Coast of Mexico , 1997 .

[67]  John F. B. Mitchell,et al.  The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation , 1997 .

[68]  Robert Woodruff,et al.  Detecting seasonal flooding cycles in marshes of the Yucatan Peninsula with SIR-C polarimetric radar imagery , 1997 .

[69]  B. Brisco,et al.  RADARSAT Applications: Review of GlobeSAR Program , 1996 .

[70]  Yong Wang,et al.  Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar , 1995, IEEE Trans. Geosci. Remote. Sens..

[71]  P. Marsh,et al.  Analysis of Spring High Water Events in the Mackenzie Delta and Implications for Lake and Terrestrial Flooding , 1994 .

[72]  E. Kasischke,et al.  Identification of central Kenyan Rift Valley Fever virus vector habitats with landsat TM and evaluation of their flooding status with airborne imaging radar , 1992 .

[73]  L. Hess,et al.  Radar detection of flooding beneath the forest canopy - A review , 1990 .

[74]  C. Mutero,et al.  [Factors affecting the vegetation restoration after fires in cold temperate wetlands: A review]. , 1987 .

[75]  Anita Tailor,et al.  Introductory digital image processing: a remote sensing perspective: Jensen, J R Prentice-Hall, Englewood Cliffs, NJ, USA (1986) £51.30 pp 392 , 1986 .

[76]  J. Goodman Some fundamental properties of speckle , 1976 .

[77]  Rasim Latifovic,et al.  Medium resolution land cover mapping of Canada from SPOT 4/5 data , 2015 .

[78]  K. Moffett,et al.  Remote Sens , 2015 .

[79]  Peng Chen,et al.  [Factors affecting the vegetation restoration after fires in cold temperate wetlands: A review]. , 2013, Ying yong sheng tai xue bao = The journal of applied ecology.

[80]  D. Lettenmaier,et al.  Progress in Hydrological Modeling over High Latitudes: Under Arctic Climate System Study (ACSYS) , 2012 .

[81]  Brian Brisco,et al.  Advanced SAR applications for Canada's cryosphere (freshwater ice and permafrost), final technical report , 2012 .

[82]  Gangyao Kuang,et al.  DETECTING WATER BODIES ON RADARSAT IMAGERY , 2011 .

[83]  LiJonathan,et al.  Detecting Water Bodies on RADARSAT Imagery , 2011 .

[84]  W. Wagner,et al.  TIDAL WETLAND MONITORING USING POLARIMETRIC SYNTHETIC APERTURE RADAR , 2010 .

[85]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[86]  J. Cihlar,et al.  Wetlands of Canada and Climate Change: Observation Strategy and Baseline Data , 2000 .

[87]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[88]  N. Davidson,et al.  Global wetland inventory – current status and future priorities , 1999 .

[89]  B. R. M. Rao,et al.  Monitoring the spatial extent of coastal wetlands using ERS-1 SAR data , 1999 .

[90]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[91]  Eric Pottier,et al.  Polarimetric in Radar Remote Sensing : Basic and Applied Concepts in "Principles and Applications of IMAGING RADAR" , 1998 .

[92]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[93]  Eric S. Kasischke,et al.  Monitoring South Florida Wetlands Using ERS-1 SAR Imagery , 1997 .

[94]  Patrick Wambacq,et al.  Speckle filtering of synthetic aperture radar images : a review , 1994 .

[95]  R. Bastian Constructed wetlands for wastewater treatment and wildlife habitat : 17 case studies , 1993 .

[96]  J. Zyl,et al.  Unsupervised classification of scattering behavior using radar polarimetry data , 1989 .

[97]  W. P. Waite,et al.  Use of Seasat satellite radar imagery for the detection of standing water beneath forest vegetation , 1981 .