A Human-Curated Annotation of the Candida albicans Genome

Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations) that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications.

[1]  Dmitrij Frishman,et al.  MIPS: analysis and annotation of proteins from whole genomes in 2005 , 2005, Nucleic Acids Res..

[2]  G. Bohach,et al.  Characterization of Staphylococcus aureus beta-toxin induced leukotoxicity. , 2000, Journal of natural toxins.

[3]  K. Kuchler,et al.  Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters , 1995, Antimicrobial agents and chemotherapy.

[4]  S. Cheng Formation of the yeast splicing complex A1 and association of the splicing factor PRP19 with the pre-mRNA are independent of the 3' region of the intron. , 1994, Nucleic acids research.

[5]  B. Holland,et al.  Sixty alleles of the ALS7 open reading frame in Candida albicans: ALS7 is a hypermutable contingency locus. , 2003, Genome research.

[6]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[7]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[8]  B. Turcotte,et al.  A novel DNA binding motif for yeast zinc cluster proteins: the Leu3p and Pdr3p transcriptional activators recognize everted repeats , 1996, Molecular and cellular biology.

[9]  B. Hube,et al.  Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members , 2000, Archives of Microbiology.

[10]  M. Ghannoum,et al.  Reintroduction of the PLB1 gene into Candida albicans restores virulence in vivo. , 2001, Microbiology.

[11]  T. Ohama,et al.  Non-universal decoding of the leucine codon CUG in several Candida species. , 1993, Nucleic acids research.

[12]  E. Heinz,et al.  Glucosylceramide Synthases, a Gene Family Responsible for the Biosynthesis of Glucosphingolipids in Animals, Plants, and Fungi* , 2001, The Journal of Biological Chemistry.

[13]  David Y. Thomas,et al.  Population genomics of drug resistance in Candida albicans , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Y. Banno,et al.  Cerebroside of the dimorphic human pathogen, Candida albicans. , 1987, Chemistry and physics of lipids.

[15]  K. Barker,et al.  Genome-Wide Expression Profile Analysis Reveals Coordinately Regulated Genes Associated with Stepwise Acquisition of Azole Resistance in Candida albicans Clinical Isolates , 2003, Antimicrobial Agents and Chemotherapy.

[16]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[17]  M. Ghannoum,et al.  Dimorphism-associated variations in the lipid composition of Candida albicans. , 1986, Journal of general microbiology.

[18]  K. Inoki,et al.  TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival , 2003, Cell.

[19]  Alix T. Coste,et al.  Comparison of Gene Expression Profiles of Candida albicans Azole-Resistant Clinical Isolates and Laboratory Strains Exposed to Drugs Inducing Multidrug Transporters , 2004, Antimicrobial Agents and Chemotherapy.

[20]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[21]  M. Whiteway,et al.  Stress-induced gene expression in Candida albicans: absence of a general stress response. , 2003, Molecular biology of the cell.

[22]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[23]  Alexei Fedorov,et al.  Large-scale comparison of intron positions among animal, plant, and fungal genes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  T. Walsh,et al.  Newer systemic antifungal agents : pharmacokinetics, safety and efficacy. , 2004, Drugs.

[25]  E. Herrero,et al.  Characterization of a Candida albicans gene encoding a putative transcriptional factor required for cell wall integrity. , 2003, FEMS microbiology letters.

[26]  A. Goffeau,et al.  Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals , 1995, Current Genetics.

[27]  D. Soll,et al.  Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9. , 2003, Microbiology.

[28]  Philippe Glaser,et al.  CAAT-Box, contigs-Assembly and Annotation Tool-Box for genome sequencing projects , 2004, Bioinform..

[29]  E. Chan,et al.  Sphingomyelinase of Helicobacter pylori-induced cytotoxicity in AGS gastric epithelial cells via activation of JNK kinase. , 2004, Biochemical and biophysical research communications.

[30]  G. P. Livi,et al.  Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif , 1995, Molecular microbiology.

[31]  J. Vázquez-Boland,et al.  The smcL gene of Listeria ivanovii encodes a sphingomyelinase C that mediates bacterial escape from the phagocytic vacuole , 1999, Molecular microbiology.

[32]  Jonathan E. Allen,et al.  The Genome of the Basidiomycetous Yeast and Human Pathogen Cryptococcus neoformans , 2005, Science.

[33]  A. E. Tsong,et al.  Evolution of a Combinatorial Transcriptional Circuit A Case Study in Yeasts , 2003, Cell.

[34]  A. Myers,et al.  Candida albicans ALS3 and insights into the nature of the ALS gene family , 1998, Current Genetics.

[35]  L. Hoyer,et al.  Identification of Candida albicans ALS2 andALS4 and Localization of Als Proteins to the Fungal Cell Surface , 1998, Journal of bacteriology.

[36]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[37]  E. Gulbins,et al.  Acid sphingomyelinase is involved in CEACAM receptor‐mediated phagocytosis of Neisseria gonorrhoeae , 2000, FEBS letters.

[38]  F. Eisenhaber,et al.  A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. , 2004, Journal of molecular biology.

[39]  George Newport,et al.  The diploid genome sequence of Candida albicans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Y. Zhao,et al.  Molecular cloning of a gene encoding phospholipase D from the pathogenic and dimorphic fungus, Candida albicans. , 1998, Biochimica et biophysica acta.

[41]  L. Kaufman,et al.  The Arabidopsis cupin domain protein AtPirin1 interacts with the G protein alpha-subunit GPA1 and regulates seed germination and early seedling development. , 2003, The Plant cell.

[42]  B. Turcq,et al.  Glycolipid intermembrane transfer is accelerated by HET-C2, a filamentous fungus gene product involved in the cell-cell incompatibility response. , 2003, Biochemistry.

[43]  R. Kolter,et al.  The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. , 2004, Gene.

[44]  J. Becker,et al.  An oligopeptide transport gene from Candida albicans. , 1997, Microbiology.

[45]  D. Sanglard,et al.  Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. , 1997, Microbiology.

[46]  J. Kornblum,et al.  Nucleotide sequence: the β-hemolysin gene of Staphylococcus aureus , 1989 .

[47]  J. Matthews,et al.  Zinc Fingers‐‐Folds for Many Occasions , 2002, IUBMB life.

[48]  J. Kornblum,et al.  Nucleotide sequence: the beta-hemolysin gene of Staphylococcus aureus. , 1989, Nucleic acids research.

[49]  J. Hacker,et al.  Functional analysis of a vacuolar ABC transporter in wild‐type Candida albicans reveals its involvement in virulence , 2002, Molecular microbiology.

[50]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[51]  Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.

[52]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[53]  C. d’Enfert,et al.  Candida albicans Biofilms: a Developmental State Associated With Specific and Stable Gene Expression Patterns , 2004, Eukaryotic Cell.

[54]  George Newport,et al.  Regulatory networks affected by iron availability in Candida albicans , 2004, Molecular microbiology.

[55]  J. Heitman,et al.  The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae , 1998, The EMBO journal.

[56]  Stephen F. Altschul,et al.  Evaluating the Statistical Significance of Multiple Distinct Local Alignments , 1997 .

[57]  J. Arnold,et al.  Towards understanding the evolution of the human commensal yeast Candida albicans. , 1999, Microbiology.

[58]  C. Sensen,et al.  Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. , 2002, Molecular biology of the cell.

[59]  B. Barrell,et al.  The genome sequence of Schizosaccharomyces pombe , 2002, Nature.

[60]  B. Birren,et al.  Patterns of Intron Gain and Loss in Fungi , 2004, PLoS biology.

[61]  J. Nuessen,et al.  Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. , 2005, Microbiology.

[62]  Judith Berman,et al.  Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p , 2004, Molecular microbiology.

[63]  S. Fisher,et al.  Cloning and regulated expression of the Candida albicans phospholipase B (PLB1) gene. , 1998, FEMS microbiology letters.

[64]  D. Dignard,et al.  A Ste6p/P‐glycoprotein homologue from the asexual yeast Candida albicans transports the a‐factor mating pheromone in Saccharomyces cerevisiae , 1998, Molecular microbiology.

[65]  Marek S. Skrzypek,et al.  The Candida Genome Database (CGD), a community resource for Candida albicans gene and protein information , 2004, Nucleic Acids Res..

[66]  Keith Joiner,et al.  An analysis of the Candida albicans genome database for soluble secreted proteins using computer‐based prediction algorithms , 2003, Yeast.

[67]  R. Lester,et al.  Sphingolipid functions in Saccharomyces cerevisiae. , 2002, Biochimica et biophysica acta.

[68]  Yaniv Ziv,et al.  Revealing modular organization in the yeast transcriptional network , 2002, Nature Genetics.

[69]  W. Martin,et al.  Five identical intron positions in ancient duplicated genes of eubacterial origin , 1994, Nature.

[70]  M. Ghannoum Potential role of phospholipases in virulence and fungal pathogenesis. , 2000, Clinical microbiology reviews.

[71]  W. Huh,et al.  Characterization of the gene family encoding alternative oxidase from Candida albicans. , 2001, The Biochemical journal.

[72]  J. Lupisella,et al.  Isolation and sequence analysis of the gene encoding translation elongation factor 3 from Candida albicans , 1992, Yeast.

[73]  J. Jurka,et al.  Microsatellites in different eukaryotic genomes: survey and analysis. , 2000, Genome research.

[74]  F. Odds,et al.  Pathogenesis of Candida infections. , 1994, Journal of the American Academy of Dermatology.

[75]  M. Uhl,et al.  Haploinsufficiency‐based large‐scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C.albicans , 2003, The EMBO journal.

[76]  J M Cherry Genetic nomenclature guide. Saccharomyces cerevisiae. , 1995, Trends in genetics : TIG.

[77]  L. Hoyer,et al.  The ALS gene family of Candida albicans. , 2001, Trends in microbiology.

[78]  F. Lang,et al.  Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells , 2001, Apoptosis.

[79]  Smriti,et al.  ABC transporters Cdr1p, Cdr2p and Cdr3p of a human pathogen Candida albicans are general phospholipid translocators , 2002, Yeast.

[80]  P. Schjerling,et al.  Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. , 1996, Nucleic acids research.

[81]  M. V. Katti,et al.  Differential distribution of simple sequence repeats in eukaryotic genome sequences. , 2001, Molecular biology and evolution.

[82]  P. Fidel Distinct protective host defenses against oral and vaginal candidiasis. , 2002, Medical mycology.

[83]  Tobias Mourier,et al.  Eukaryotic Intron Loss , 2003, Science.

[84]  Nancy F. Hansen,et al.  Genomic evidence for a complete sexual cycle in Candida albicans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Judith Berman,et al.  Candida albicans: A molecular revolution built on lessons from budding yeast , 2002, Nature Reviews Genetics.

[86]  S. Challacombe,et al.  Candida albicans Secreted Aspartyl Proteinases in Virulence and Pathogenesis , 2003, Microbiology and Molecular Biology Reviews.

[87]  M. Ghannoum,et al.  Cloning and Disruption of caPLB1, a Phospholipase B Gene Involved in the Pathogenicity of Candida albicans * , 1998, The Journal of Biological Chemistry.

[88]  D. Schmiel,et al.  Bacterial phospholipases and pathogenesis. , 1999, Microbes and infection.

[89]  Dilip K Nag,et al.  Both CAG repeats and inverted DNA repeats stimulate spontaneous unequal sister-chromatid exchange in Saccharomyces cerevisiae. , 2004, Nucleic acids research.

[90]  M. Whiteway,et al.  The serine/threonine protein phosphatase SIT4 modulates yeast‐to‐hypha morphogenesis and virulence in Candida albicans , 2004, Molecular microbiology.

[91]  A. Andrianopoulos,et al.  Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif. , 1997, Fungal genetics and biology : FG & B.

[92]  L. Hoyer,et al.  The ALS5 gene of Candida albicans and analysis of the Als5p N‐terminal domain , 2001, Yeast.

[93]  E. Mauceli,et al.  The genome sequence of the filamentous fungus Neurospora crassa , 2003, Nature.

[94]  E. Heinz,et al.  Identification and Characterization of a Sphingolipid Δ4-Desaturase Family* , 2002, The Journal of Biological Chemistry.

[95]  B. Dujon,et al.  Genomic Exploration of the Hemiascomycetous Yeasts: 3. Methods and strategies used for sequence analysis and annotation , 2000, FEBS letters.

[96]  T. Meyer,et al.  Acidic Sphingomyelinase Mediates Entry of N. gonorrhoeae into Nonphagocytic Cells , 1997, Cell.

[97]  B. Dujon,et al.  Genome evolution in yeasts , 2004, Nature.

[98]  M. Ghannoum,et al.  Molecular cloning of a second phospholipase B gene, caPLB2 from Candida albicans. , 1999, Medical mycology.

[99]  E. Heinz,et al.  Identification and characterization of a sphingolipid delta 4-desaturase family. , 2002, The Journal of biological chemistry.

[100]  V. Sgaramella,et al.  Frequency and coverage of trinucleotide repeats in eukaryotes. , 2003, Gene.

[101]  C. Kumamoto,et al.  Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene , 1999, Molecular microbiology.

[102]  B. André,et al.  Copyright © 1997, American Society for Microbiology A Family of Ammonium Transporters in , 1997 .

[103]  M. Raymond,et al.  The Candida albicans CDR3 gene codes for an opaque-phase ABC transporter , 1997, Journal of bacteriology.

[104]  T. Tsuruo,et al.  Role of ABC Transporters in Aureobasidin A Resistance , 1998, Antimicrobial Agents and Chemotherapy.

[105]  K. Kuchler,et al.  Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance. , 1999, Biochimica et biophysica acta.

[106]  Ronald W. Davis,et al.  Metabolic specialization associated with phenotypic switching in Candida albicans , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[107]  N. Martin,et al.  CandidaDB: a genome database for Candida albicans pathogenomics , 2004, Nucleic Acids Res..

[108]  B. Akache,et al.  Phenotypic analysis of genes encoding yeast zinc cluster proteins. , 2001, Nucleic acids research.

[109]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[110]  M. Schaller,et al.  The role and relevance of phospholipase D1 during growth and dimorphism of Candida albicans. , 2001, Microbiology.

[111]  M. Hostetter,et al.  Involvement of Candida albicans NADH dehydrogenase complex I in filamentation. , 2002, Fungal genetics and biology : FG & B.

[112]  L. Hoyer,et al.  The ALS6 and ALS7 genes of Candida albicans , 2000, Yeast.

[113]  M. Uhl,et al.  Identification and Characterization of a Candida albicans Mating Pheromone , 2003, Molecular and Cellular Biology.

[114]  Cherry Jm Genetic nomenclature guide. Saccharomyces cerevisiae. , 1995 .

[115]  B. Birren,et al.  Sequencing and comparison of yeast species to identify genes and regulatory elements , 2003, Nature.

[116]  N. Ramanan,et al.  A high-affinity iron permease essential for Candida albicans virulence. , 2000, Science.

[117]  J. Morschhäuser,et al.  The Mep2p ammonium permease controls nitrogen starvation‐induced filamentous growth in Candida albicans , 2005, Molecular microbiology.

[118]  H. Bussey,et al.  Large‐scale essential gene identification in Candida albicans and applications to antifungal drug discovery , 2003, Molecular microbiology.

[119]  Kara Dolinski,et al.  Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms , 2004, Nucleic Acids Res..

[120]  M. Rodrigues,et al.  Structure and biological functions of fungal cerebrosides. , 2004, Anais da Academia Brasileira de Ciencias.

[121]  Sven Bergmann,et al.  Defining transcription modules using large-scale gene expression data , 2004, Bioinform..

[122]  B. Turcq,et al.  Inactivation of the Podospora anserina vegetative incompatibility locus het-c, whose product resembles a glycolipid transfer protein, drastically impairs ascospore production. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[123]  R. Calderone,et al.  Disruption studies of a Candida albicans gene, ELF1: a member of the ATP-binding cassette family. , 1998, Microbiology.

[124]  T. C. White,et al.  Three distinct secreted aspartyl proteinases in Candida albicans , 1993, Journal of bacteriology.

[125]  S. Michaelis,et al.  A Region within a Lumenal Loop of Saccharomyces cerevisiae Ycf1p Directs Proteolytic Processing and Substrate Specificity , 2003, Eukaryotic Cell.

[126]  S. Klotz,et al.  Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins , 1997, Infection and immunity.

[127]  P. Kylsten,et al.  A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[128]  R. Prasad,et al.  Membrane Sphingolipid-Ergosterol Interactions Are Important Determinants of Multidrug Resistance in Candida albicans , 2004, Antimicrobial Agents and Chemotherapy.

[129]  P. T. Magee,et al.  The genes encoding the secreted aspartyl proteinases of Candida albicans constitute a family with at least three members , 1993, Infection and immunity.

[130]  L. Obeid,et al.  Yeast sphingolipids: metabolism and biology. , 2002, Biochimica et biophysica acta.

[131]  M. Borodovsky,et al.  GeneMark.hmm: new solutions for gene finding. , 1998, Nucleic acids research.

[132]  B. Hube,et al.  Tissue infection and site-specific gene expression in Candida albicans. , 2003, Advances in applied microbiology.

[133]  Matthew Berriman,et al.  Viewing and Annotating Sequence Data with Artemis , 2003, Briefings Bioinform..

[134]  R. Roeder,et al.  TATA-Binding Protein-Interacting Protein 120, TIP120, Stimulates Three Classes of Eukaryotic Transcription via a Unique Mechanism , 1999, Molecular and Cellular Biology.

[135]  M. Raymond,et al.  Isolation of a Putative Candida albicansTranscriptional Regulator Involved in Pleiotropic Drug Resistance by Functional Complementation of a pdr1 pdr3 Mutation inSaccharomyces cerevisiae , 1999, Journal of bacteriology.

[136]  D. Coleman,et al.  Genetic characterization of a phospholipase C gene from Candida albicans: presence of homologous sequences in Candida species other than Candida albicans. , 1998, Microbiology.

[137]  J. Coque,et al.  Sequencing of a 4.3 kbp region of chromosome 2 of Candida albicans reveals the presence of homologues of SHE9 from Saccharomyces cerevisiae and of bacterial phosphatidylinositol‐phospholipase C , 2001, Yeast.

[138]  K. Kwon-Chung,et al.  A zinc finger protein from Candida albicans is involved in sucrose utilization , 1992, Journal of bacteriology.

[139]  Mason Zhang,et al.  Functional and Structural Diversity in the Als Protein Family of Candida albicans* , 2004, Journal of Biological Chemistry.

[140]  J. Morschhäuser,et al.  A fourth gene from the Candida albicans CDR family of ABC transporters. , 1998, Gene.