MODELING THE JET KINEMATICS OF THE BLACK HOLE MICROQUASAR XTE J1550−564: A CONSTRAINT ON SPIN–ORBIT ALIGNMENT

Measurements of black hole spin made using the continuum-fitting method rely on the assumption that the inclination of the black hole's spin axis to our line of sight is the same as the orbital inclination angle i of the host binary system. The X-ray and radio jet data available for the microquasar XTE J1550−564 offer a rare opportunity to test this assumption. Following the work of others, we have modeled these data and thereby determined the inclination angle θ of the jet axis, which is presumed to be aligned with the black hole's spin axis. We find θ ≈ 71° and place an upper limit on the difference between the spin and orbital inclinations of |θ − i| < 12° (90% confidence). Our measurement tests for misalignment along the line of sight while providing no constraint perpendicular to this plane. Our constraint on the misalignment angle supports the prediction that the spinning black hole in XTE J1550−564 has aligned itself with the orbital plane and provides support for the measurement of its spin via the continuum-fitting method. Our conclusions are based on a simple and reasonable model of a pair of symmetric jets propagating into a low-density cavity whose western wall is ≈20% closer to XTE J1550−564 than its eastern wall.

[1]  J. Orosz,et al.  AN IMPROVED DYNAMICAL MODEL FOR THE MICROQUASAR XTE J1550−564 , 2011, 1101.2499.

[2]  J. Orosz,et al.  The spin of the black hole microquasar XTE J1550−564 via the continuum-fitting and Fe-line methods , 2010, 1010.1013.

[3]  R. Narayan,et al.  THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.

[4]  K. Belczyński,et al.  BLACK HOLE SPIN–ORBIT MISALIGNMENT IN GALACTIC X-RAY BINARIES , 2010, 1001.1107.

[5]  S. Zhang,et al.  LARGE-SCALE CAVITIES SURROUNDING MICROQUASARS INFERRED FROM EVOLUTION OF THEIR RELATIVISTIC JETS , 2009, 0907.3849.

[6]  J. Lovell,et al.  Revisiting the relativistic ejection event in XTE J1550-564 during the 1998 outburst , 2009, 0904.4849.

[7]  D. Steeghs,et al.  A NEW DYNAMICAL MODEL FOR THE BLACK HOLE BINARY LMC X-1 , 2008, 0810.3447.

[8]  Rebecca G. Martin,et al.  Alignment time-scale of the microquasar GRO J1655−40 , 2008, 0802.3912.

[9]  J. McClintock,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[10]  A. Merloni,et al.  A radio-emitting outflow in the quiescent state of A0620−00: implications for modelling low-luminosity black hole binaries , 2006, astro-ph/0605376.

[11]  G. Pringle,et al.  The evolution of misaligned accretion discs and spinning black holes , 2006, astro-ph/0602306.

[12]  J. Pringle,et al.  Aligning spinning black holes and accretion discs , 2005, astro-ph/0507098.

[13]  J. Martí,et al.  Optical and near‐infrared observations of the microquasar V4641 Sgr during the 1999 September outburst , 2003, astro-ph/0303536.

[14]  Z. Dai,et al.  External Shock Model for the Large-Scale, Relativistic X-Ray Jets from the Microquasar XTE J1550–564 , 2003, astro-ph/0303370.

[15]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology , 2003, astro-ph/0302218.

[16]  P. Kaaret,et al.  X-Ray Emission from the Jets of XTE J1550–564 , 2002, astro-ph/0210401.

[17]  P. Kaaret,et al.  Large-Scale, Decelerating, Relativistic X-ray Jets from the Microquasar XTE J1550-564 , 2002, Science.

[18]  T. Maccarone On the misalignment of jets in microquasars , 2002, astro-ph/0209105.

[19]  S. Heinz,et al.  Radio lobe dynamics and the environment of microquasars , 2002, astro-ph/0203295.

[20]  J. Orosz,et al.  Optical and Infrared Photometry of the Microquasar GRO J1655–40 in Quiescence , 2001, astro-ph/0101337.

[21]  Charles D. Bailyn,et al.  A Black Hole in the Superluminal Source SAX J1819.3–2525 (V4641 Sgr) , 2000, astro-ph/0103045.

[22]  Simon T. Garrington,et al.  Light Curves and Radio Structure of the 1999 September Transient Event in V4641 Sagittarii (=XTE J1819–254=SAX J1819.3–2525) , 2000 .

[23]  J. Orosz,et al.  Complete RXTE Spectral Observations of the Black Hole X-ray Nova XTE J1550–564 , 2000, astro-ph/0005599.

[24]  Z. Dai,et al.  A GENERIC DYNAMICAL MODEL OF GAMMA-RAY BURST REMNANTS , 1999, astro-ph/9906370.

[25]  I. Mirabel,et al.  Sources of Relativistic Jets in the Galaxy , 1999, astro-ph/9902062.

[26]  P. Natarajan,et al.  The Alignment of Disk and Black Hole Spins in Active Galactic Nuclei , 1998, astro-ph/9808187.

[27]  R. M. Hjellming,et al.  Episodic ejection of relativistic jets by the X-ray transient GRO J1655 - 40 , 1995, Nature.

[28]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[29]  Nicholas E. White,et al.  X-ray fluorescence from the inner disc in Cygnus X-1 , 1989 .

[30]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[31]  R. Blandford,et al.  Fluid dynamics of relativistic blast waves , 1976 .

[32]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[33]  V. Martínez,et al.  Data analysis in cosmology , 2009 .

[34]  Wei Cui,et al.  To appear in The Astrophysical Journal Letters BLACK HOLE SPIN IN X-RAY BINARIES: OBSERVATIONAL CONSEQUENCES II , 1997 .

[35]  J. Bardeen,et al.  The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes , 1975 .