Fibred semantics and the weaving of logics. Part 1: Modal and intuitionistic logics
暂无分享,去创建一个
[1] Ronald Fagin,et al. A Nonstandard Approach to the Logical Omniscience Problem , 1990, Artif. Intell..
[2] Duminda Wijesekera,et al. Constructive Modal Logics I , 1990, Ann. Pure Appl. Log..
[3] Melvin Fitting,et al. Many-valued modal logics , 1991, Fundam. Informaticae.
[4] H. Ono. On Some Intuitionistic Modal Logics , 1977 .
[5] W. B. Ewald,et al. Intuitionistic tense and modal logic , 1986, Journal of Symbolic Logic.
[6] R. A. Bull. A modal extension of intuitionist logic , 1965, Notre Dame J. Formal Log..
[7] Gerhard Lakemeyer. Tractable Meta-Reasoning in Propositional Logics of Belief , 1987, IJCAI.
[8] J. Pfalzgraf. A note on simplices as geometric configurations , 1987 .
[9] K. Dosen,et al. Models for normal intuitionistic modal logics , 1984 .
[10] Kosta Dosen,et al. Models for stronger normal intuitionistic modal logics , 1985, Stud Logica.
[11] Nobu-Yuki Suzuki. Kripke bundles for intermediate predicate logics and Kripke frames for intuitionistic modal logics , 1990, Stud Logica.
[12] Marcus Kracht,et al. Properties of independently axiomatizable bimodal logics , 1991, Journal of Symbolic Logic.
[13] Gisèle Fischer Servi. On modal logic with an intuitionistic base , 1977 .
[14] Gisèle Fischer Servi,et al. Semantics for a Class of Intuitionistic Modal Calculi , 1980 .
[15] M. de Rijke,et al. Why Combine Logics? , 1997, Stud Logica.
[16] Jaakko Hintikka,et al. Time And Modality , 1958 .
[17] Melvin Fitting,et al. Tableaus for many-valued modal logic , 1995, Stud Logica.
[18] Nobu-Yuki Suzuki. An algebraic approach to intuitionistic modal logics in connection with intermediate predicate logics , 1989, Stud Logica.
[19] Josep Maria Font,et al. Modality and possibility in some intuitionistic modal logics , 1986, Notre Dame J. Formal Log..
[20] Melvin Fitting,et al. Many-valued modal logics II , 1992 .
[21] Dov M. Gabbay,et al. Fibred semantics for feature-based grammar logic , 1996, J. Log. Lang. Inf..
[22] James P. Delgrande,et al. An Approach to Default Reasoning Based on a First-Order Conditional Logic: Revised Report , 1987, Artif. Intell..
[23] Dov M. Gabbay,et al. Adding a temporal dimension to a logic system , 1992, J. Log. Lang. Inf..
[24] Karel Stokkermans,et al. On Robotics Scenarios and Modeling with Fibered Structures , 1995 .
[25] Dov M. Gabbay,et al. Adding a temporal dimension to a logic , 1992 .
[26] Dov M. Gabbay,et al. Combining Temporal Logic Systems , 1996, Notre Dame J. Formal Log..
[27] Hector J. Levesque,et al. A Logic of Implicit and Explicit Belief , 1984, AAAI.
[28] Valentin Goranko,et al. Using the Universal Modality: Gains and Questions , 1992, J. Log. Comput..
[29] Jochen Pfalzgraf. Logical fiberings and polycontextural systems , 1991, FAIR.