Concept-oriented video skimming via semantic video classification

Effective video skimming requires a good understanding of the semantics of video contents. However, more existing systems for content-based video retrieval (CBVR) can only support low-level video analysis, but they have limited effectiveness on achieving semantic-sensitive video understanding. In this paper, we have developed a novel framework to achieve concept-oriented video skimming and it consists of three parts: (a) using salient objects for semantic-sensitive video content representation; (b) using finite mixture models for semantic video concept modeling and classification; (c) enabling concept-oriented video skimming via semantic video classification.