MM algorithms for geometric and signomial programming

This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  Stephen P. Boyd,et al.  Optimal design of a CMOS op-amp via geometric programming , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  R. Steele Optimization , 2005 .

[4]  J. Ecker Geometric Programming: Methods, Computations and Applications , 1980 .

[5]  Hua Zhou,et al.  Graphics Processing Units and High-Dimensional Optimization. , 2010, Statistical science : a review journal of the Institute of Mathematical Statistics.

[6]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[7]  Kenneth Hoffman,et al.  Analysis in Euclidean Space , 1975 .

[8]  A. Peressini,et al.  The Mathematics Of Nonlinear Programming , 1988 .

[9]  K. Lange,et al.  MM Algorithms for Some Discrete Multivariate Distributions , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[10]  Clarence Zener,et al.  Geometric Programming , 1974 .

[11]  J. Steele The Cauchy–Schwarz Master Class: References , 2004 .

[12]  D. Hunter,et al.  A Tutorial on MM Algorithms , 2004 .

[13]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[14]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[15]  Yanjun Wang,et al.  Geometric Programming , 2009, Encyclopedia of Optimization.

[16]  Xiao-Li Meng,et al.  [Optimization Transfer Using Surrogate Objective Functions]: Discussion , 2000 .

[17]  T. R. Jefferson,et al.  Maximum likelihood estimates for multinomial probabilities via geometric programming , 1983 .

[18]  Hua Zhou,et al.  Path following in the exact penalty method of convex programming , 2012, Comput. Optim. Appl..

[19]  Peiping Shen,et al.  A new type of condensation curvilinear path algorithm for unconstrained generalized geometric programming , 2002 .

[20]  U. Passy,et al.  The Geometric Programming Dual to the Extinction Probability Problem in Simple Branching Processes , 1981 .

[21]  D. J. Wilde,et al.  A geometric programming algorithm for solving chemical equilibrium problems. , 1968 .

[22]  Daniel D. Lee,et al.  Multiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines , 2002, NIPS.

[23]  Hua Zhou,et al.  A fast procedure for calculating importance weights in bootstrap sampling , 2011, Comput. Stat. Data Anal..

[24]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[25]  Hua Zhou,et al.  A quasi-Newton acceleration for high-dimensional optimization algorithms , 2011, Stat. Comput..

[26]  Stephen P. Boyd,et al.  A tutorial on geometric programming , 2007, Optimization and Engineering.