Planetary Satellite Orbiters: Applications for the Moon

Low-altitude, near-polar orbits are very desirable as science orbits for missions to planetary satellites, such as the Earth's Moon. In this paper, we present an analytical theory with numerical simulations to study the orbital motion of lunar low-altitude artificial satellite. We consider the problem of an artificial satellite perturbed by the nonuniform distribution of the mass of the Moon (𝐽2–𝐽5, 𝐽7, and 𝐶22). The conditions to get frozen orbits are presented. Using an approach that considers the single-averaged problem, we found families of periodic orbits for the problem of an orbiter travelling around the Moon, where frozen orbits valid for long periods of time are found. A comparison between the models for the zonal and tesseral harmonics coefficients is presented.

[1]  Othon Cabo Winter,et al.  Controlling the Eccentricity of Polar Lunar Orbits with Low-Thrust Propulsion , 2009 .

[2]  J. Junkins,et al.  Orbital mission analysis for a lunar mapping satellite , 1994 .

[3]  Andrea Milani,et al.  Orbit maintenance of a lunar polar orbiter , 1998 .

[4]  M. Radwan Analytical Approach to the Motion of a Lunar Artificial Satellite , 2003 .

[5]  M. Lara,et al.  Lunar Analytical Theory for Polar Orbits in a 50-Degree Zonal Model Plus Third-Body Effect , 2009 .

[6]  Jean Kovalevsky,et al.  Introduction to Celestial Mechanics , 1967 .

[7]  M. Lara,et al.  Dynamic Behavior of an Orbiter around Europa , 2005 .

[8]  Prasun N. Desai,et al.  Lifetimes of Lunar Satellite Orbits , 1998 .

[9]  J. P. S. Carvalho,et al.  Some orbital characteristics of lunar artificial satellites , 2010 .

[10]  T. Felsentreger,et al.  A semi-analytic theory for the motion of a lunar satellite , 1970 .

[11]  R. Russell,et al.  Mission design through averaging of perturbed Keplerian systems: the paradigm of an Enceladus orbiter , 2010 .

[12]  M. Lara,et al.  PRELIMINARY DESIGN OF LOW LUNAR ORBITS , 2009 .

[13]  M. Lara Simplified Equations for Computing Science Orbits Around Planetary Satellites , 2008 .

[14]  Hans Mark,et al.  Adventures in Celestial Mechanics , 1998 .

[15]  K. Tsiganis,et al.  Quasi-critical orbits for artificial lunar satellites , 2009 .

[16]  J. Palacián,et al.  Hill Problem Analytical Theory to the Order Four: Application to the Computation of Frozen Orbits around Planetary Satellites , 2009 .

[17]  J. Palacián Dynamics of a satellite orbiting a planet with an inhomogeneous gravitational field , 2007 .

[18]  Rodolpho Vilhena de Moraes,et al.  Nonsphericity of the Moon and Near Sun-Synchronous Polar Lunar Orbits , 2009 .

[19]  Daniel J. Scheeres,et al.  Design of Science Orbits About Planetary Satellites: Application to Europa , 2006 .

[20]  Ryan P. Russell,et al.  Long-Lifetime Lunar Repeat Ground Track Orbits , 2007 .

[21]  B. D. Saedeleer Analytical theory of a lunar artificial satellite with third body perturbations , 2006 .

[22]  A. Konopliv,et al.  Recent Gravity Models as a Result of the Lunar Prospector Mission , 2001 .

[23]  D. Scheeres,et al.  Stability Analysis of Planetary Satellite Orbiters: Application to the Europa Orbiter , 2001 .

[24]  Antonio Elipe,et al.  Frozen Orbits About the Moon , 2003 .

[25]  A. Abad,et al.  Analytical Model to Find Frozen Orbits for a Lunar Orbiter , 2009 .

[26]  J. San-Juan,et al.  A note on lower bounds for relative equilibria in the main problem of artificial satellite theory , 2007 .

[27]  A. Cayley Tables of the Developments of Functions in the Theory of Elliptic Motion , 1860 .

[28]  Lixin Tian,et al.  Periodic and Solitary Wave Solutions to the Fornberg-Whitham Equation , 2009, 0908.0884.

[29]  J. P. S. Carvalho,et al.  Campos – SP – Brazil – July 26-30 , 2010 FROZEN ORBITS AROUND THE EUROPA SATELLITE , 2010 .

[30]  David Quinn,et al.  Lunar Frozen Orbits , 2006 .