Rational general solutions of first-order algebraic ODEs

This paper generalizes the method of Ngo and Winkler (2010, 2011) for finding rational general solutions of a first order non-autonomous algebraic ordinary differential equation (AODE) to the case of a higher order AODE, provided a proper parametrization of its solution hypersurface. The authors reduce the problem of finding the rational general solution of a higher order AODE to finding the rational general solution of an associated system. The rational general solutions of the original AODE and its associated system are in computable 1-1 correspondence. The authors give necessary and sufficient conditions for the associated system to have a rational solution based on proper reparametrization of invariant algebraic space curves. The authors also relate invariant space curves to first integrals and characterize rationally solvable systems by rational first integrals.

[1]  Daniel Lazard,et al.  A new method for solving algebraic systems of positive dimension , 1991, Discret. Appl. Math..

[2]  Guoting Chen,et al.  Algorithmic Reduction and Rational General Solutions of First Order Algebraic Differential Equations , 2005 .

[3]  Franz Winkler,et al.  Rational general solutions of planar rational systems of autonomous ODEs☆ , 2011, J. Symb. Comput..

[4]  Ngo Lam Xuan Chau Rational general solutions of first order non-autonomous parametric ODEs ∗ , 2009 .

[5]  Chandrajit L. Bajaj,et al.  Automatic parameterization of rational curves and surfaces III: Algebraic plane curves , 1988, Comput. Aided Geom. Des..

[6]  Fritz Schwarz,et al.  Algorithmic Lie Theory for Solving Ordinary Differential Equations , 2007 .

[7]  J. Rafael Sendra,et al.  Rational Algebraic Curves , 2008 .

[8]  A. Schinzel Polynomials with Special Regard to Reducibility: Polynomials over a number field , 2000 .

[9]  J. Rafael Sendra,et al.  Rational Algebraic Curves: A Computer Algebra Approach , 2007 .

[10]  A. Seidenberg,et al.  Reduction of Singularities of the Differential Equation Ady = Bdx , 1968 .

[11]  E. Kamke Differentialgleichungen : Lösungsmethoden und Lösungen , 1977 .

[12]  Yiu-Kwong Man,et al.  Computing Closed Form Solutions of First Order ODEs Using the Prelle-Singer Procedure , 1993, J. Symb. Comput..

[13]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[14]  Michael Kalkbrener,et al.  A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties , 1993, J. Symb. Comput..

[15]  J. Jouanolou,et al.  Equations de Pfaff algébriques , 1979 .

[16]  Franz Winkler,et al.  Rational general solutions of higher order algebraic odes , 2013, J. Syst. Sci. Complex..

[17]  Chandrajit L. Bajaj,et al.  Automatic parameterization of rational curves and surfaces IV: algebraic space curves , 1988, TOGS.

[18]  Manuel M. Carnicer,et al.  The Poincaré problem in the nondicritical case , 1994 .

[19]  Josef Schicho,et al.  Rational Parametrization of Surfaces , 1998, J. Symb. Comput..

[20]  Marc Moreno Maza,et al.  When does (T) equal sat(T)? , 2008, ISSAC '08.

[21]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[22]  M. Artin,et al.  Some Elementary Examples of Unirational Varieties Which are Not Rational , 1972 .

[23]  Franz Winkler,et al.  Rational general solutions of first order non-autonomous parametrizable ODEs , 2010, J. Symb. Comput..

[24]  A. L. Neto Algebraic solutions of polynomial differential equations and foliations in dimension two , 1988 .

[25]  W. Yuan A note on the Riccati differential equation , 2003 .

[26]  G. Latta,et al.  Ordinary differential equations and their solutions , 1960 .

[27]  Xiao-Shan Gao,et al.  A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs , 2006, J. Symb. Comput..

[28]  J. Rafael Sendra,et al.  Radical parametrizations of algebraic curves by adjoint curves , 2011, J. Symb. Comput..

[29]  Franz Winkler,et al.  Rational general solutions of parametrizable AODEs , 2011 .

[30]  J. Rafael Sendra,et al.  Tracing index of rational curve parametrizations , 2001, Comput. Aided Geom. Des..

[31]  Franz Winkler,et al.  Classification of algebraic ODEs with respect to rational solvability , 2012 .

[32]  Xiao-Shan Gao,et al.  Rational general solutions of algebraic ordinary differential equations , 2004, ISSAC '04.

[33]  Alexandre Eremenko RATIONAL SOLUTIONS OF FIRST-ORDER DIFFERENTIAL EQUATIONS , 1998 .

[34]  Michael F. Singer,et al.  Liouvillian First Integrals of Differential Equations , 1988, ISSAC.

[35]  E. Kolchin Differential Algebra and Algebraic Groups , 2012 .

[36]  M. J. Prelle,et al.  Elementary first integrals of differential equations , 1981, SYMSAC '81.

[37]  G. Darboux,et al.  Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré , 1878 .

[38]  Xiao-Shan Gao,et al.  Polynomial General Solutions for First Order Autonomous ODEs , 2004, IWMM/GIAE.

[39]  Evelyne Hubert,et al.  The general solution of an ordinary differential equation , 1996, ISSAC '96.

[40]  D. Zwillinger Handbook of differential equations , 1990 .

[41]  Xiao-Shan Gao,et al.  Algebraic general solutions of algebraic ordinary differential equations , 2005, ISSAC.

[42]  Manuel Bronstein,et al.  Symbolic integration I: transcendental functions , 1997 .

[43]  I. Shafarevich Basic algebraic geometry , 1974 .

[44]  Evelyne Hubert,et al.  Factorization-free Decomposition Algorithms in Differential Algebra , 2000, J. Symb. Comput..

[45]  Xiang Zhang,et al.  Rational first integrals in the Darboux theory of integrability in C^n , 2010 .

[46]  Sebastian Walcher,et al.  On the Poincaré Problem , 2000 .

[47]  A. Cohen An Elementary Treatise on Differential Equations , 1948 .