Transcription complex stability and chromatin dynamics in vivo

Distant regulatory sequences affect transcription through long-range chromatin interactions. Visualization of transcriptional activity of genes that compete for distant elements, using the globin locus as a model, has revealed the dynamics of chromatin interactions in vivo. Multiple genes appear to be transcribed alternately rather than at the same time to generate several messenger RNAs in one cell. The regulator may stably complex with one gene at a time and switch back and forth between genes in a flip-flop mechanism.

[1]  G. Stamatoyannopoulos,et al.  Coexpression of gamma and beta globin mRNA in cells containing a single human beta globin locus: results from studies using single-cell reverse transcription polymerase chain reaction [published erratum appears in Blood 1994 Aug 15;84(4):1357] , 1994 .

[2]  J. Banerji,et al.  Analysis of the transcriptional enhancer effect. , 1983, Cold Spring Harbor Symposia on Quantitative Biology.

[3]  F. Grosveld,et al.  Importance of globin gene order for correct developmental expression. , 1991, Genes & development.

[4]  F. Collins,et al.  The molecular genetics of human hemoglobin. , 1984, Progress in nucleic acid research and molecular biology.

[5]  F. Grosveld,et al.  Hypersensitive site 4 of the human β globin locus control region , 1991 .

[6]  J. D. Engel Developmental regulation of human beta-globin gene transcription: a switch of loyalties? , 1993, Trends in genetics : TIG.

[7]  F. Grosveld,et al.  Human γ-globin genes silenced independently of other genes in the β-globin locus , 1991, Nature.

[8]  G. Stamatoyannopoulos,et al.  Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice , 1990, Nature.

[9]  D. Kioussis,et al.  β-Globin gene inactivation by DNA translocation in γβ-thalassaemi , 1983, Nature.

[10]  P. Chambon,et al.  The SV40 72 bp repeat preferentially potentiates transcription starting from proximal natural or substitute promoter elements , 1983, Cell.

[11]  N. Mantei,et al.  Characterization and kinetics of synthesis of 15S beta-globin RNA, a putative precursor of beta-globin mRNA. , 1978, Cold Spring Harbor symposia on quantitative biology.

[12]  P. Fraser,et al.  Specific pattern of gene expression during induction of mouse erythroleukemia cells. , 1987, Genes & development.

[13]  L. Tolmach,et al.  Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. , 1963, Experimental cell research.

[14]  T. Jovin,et al.  Analysis and sorting of living cells according to deoxyribonucleic acid content. , 1977, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[15]  J. Strouboulis,et al.  Developmental regulation of a complete 70-kb human beta-globin locus in transgenic mice. , 1992, Genes & development.

[16]  W. C. Forrester,et al.  Molecular analysis of the human beta-globin locus activation region. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. D. Engel,et al.  Developmental regulation of β-globin gene switching , 1988, Cell.

[18]  B. Alter,et al.  Gamma delta beta-thalassemia due to a de novo mutation deleting the 5' beta-globin gene activation-region hypersensitive sites. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[19]  D. Tuan,et al.  The "beta-like-globin" gene domain in human erythroid cells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[20]  F. Grosveld,et al.  Detailed analysis of the site 3 region of the human beta‐globin dominant control region. , 1990, The EMBO journal.

[21]  A. Nienhuis,et al.  Tandem AP-1-binding sites within the human beta-globin dominant control region function as an inducible enhancer in erythroid cells. , 1990, Genes & development.

[22]  F. Grosveld,et al.  The beta‐globin dominant control region: hypersensitive site 2. , 1990, The EMBO journal.

[23]  R. Palmiter,et al.  Human gamma- to beta-globin gene switching in transgenic mice. , 1990, Genes & development.

[24]  F. Grosveld,et al.  DNaseI hypersensitive sites 1, 2 and 3 of the human beta-globin dominant control region direct position-independent expression. , 1990, Nucleic acids research.

[25]  E. Bresnick,et al.  Dual promoter activation by the human beta-globin locus control region. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Robert H. Singer,et al.  Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization , 1989, Cell.

[27]  F. Grosveld,et al.  An in vitro globin gene switching model based on differentiated embryonic stem cells. , 1990, Genes & development.

[28]  G. Kollias,et al.  Position-independent, high-level expression of the human β-globin gene in transgenic mice , 1987, Cell.

[29]  G. Stamatoyannopoulos,et al.  Autonomous developmental control of human embryonic globin gene switching in transgenic mice. , 1990, Science.

[30]  A. Raap,et al.  Methodologies for specific intron and exon RNA localization in cultured cells by haptenized and fluorochromized probes. , 1993, Journal of cell science.

[31]  N. Martin,et al.  A single erythroid-specific DNase I super-hypersensitive site activates high levels of human beta-globin gene expression in transgenic mice. , 1989, Genes & development.

[32]  S. Orkin,et al.  In vivo protein-DNA interactions at hypersensitive site 3 of the human beta-globin locus control region. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. Prescott,et al.  Synthesis of RNA and protein during mitosis in mammalian tissue culture cells. , 1962, Experimental cell research.

[34]  F. Grosveld,et al.  Each hypersensitive site of the human beta-globin locus control region confers a different developmental pattern of expression on the globin genes. , 1993, Genes & development.