SuperDC: Stable superfast divide-and-conquer eigenvalue decomposition

For dense Hermitian matrices with small off-diagonal (numerical) ranks and in a hierarchically semiseparable form, we give a stable divide-and-conquer eigendecomposition method with nearly linear complexity (called SuperDC) that significantly improves an earlier basic algorithm in [Vogel, Xia, et al., SIAM J. Sci. Comput., 38 (2016)]. We incorporate a sequence of key stability techniques and provide many improvements in the algorithm design. Various stability risks in the original algorithm are analyzed, including potential exponential norm growth, cancellations, loss of accuracy with clustered eigenvalues or intermediate eigenvalues, etc. In the dividing stage, we give a new structured low-rank update strategy with balancing that eliminates the exponential norm growth and also minimizes the ranks of low-rank updates. In the conquering stage with low-rank updated eigenvalue solution, the original algorithm directly uses the regular fast multipole method (FMM) to accelerate function evaluations, which has the risks of cancellation, division by zero, and slow convergence. Here, we design a triangular FMM to avoid cancellation. Furthermore, when there are clustered intermediate eigenvalues or when updates to existing eigenvalues are very small, we design a novel local shifting strategy to integrate FMM accelerations into the solution of shifted secular equations so as to achieve both the efficiency and the reliability. We also provide several improvements or clarifications on some structures and techniques that are missing or unclear in the previous work. The resulting SuperDC eigensolver has significantly better stability while keeping the nearly linear complexity for finding the entire eigenvalue decomposition. In a set of comprehensive tests, SuperDC shows dramatically lower runtime and storage than the Matlab eig function. The stability benefits are also confirmed with both analysis and numerical comparisons.

[1]  Xiaobai Sun,et al.  A Matrix Version of the Fast Multipole Method , 2001, SIAM Rev..

[2]  James M. Varah,et al.  The prolate matrix , 1993 .

[3]  Jianlin Xia,et al.  On the Complexity of Some Hierarchical Structured Matrix Algorithms , 2012, SIAM J. Matrix Anal. Appl..

[4]  Victor Y. Pan,et al.  Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations , 2005, Numerische Mathematik.

[5]  Alle-Jan van der Veen,et al.  Some Fast Algorithms for Sequentially Semiseparable Representations , 2005, SIAM J. Matrix Anal. Appl..

[6]  HackbuschW. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .

[7]  Xiangke Liao,et al.  An improved divide-and-conquer algorithm for the banded matrices with narrow bandwidths , 2016, Comput. Math. Appl..

[8]  Shivkumar Chandrasekaran,et al.  A divide-and-conquer algorithm for the eigendecomposition of symmetric block-diagonal plus semiseparable matrices , 2004, Numerische Mathematik.

[9]  Gene H. Golub,et al.  Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.

[10]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[11]  Paul Van Dooren,et al.  Implicit double shift QR-algorithm for companion matrices , 2010, Numerische Mathematik.

[12]  Jianlin Xia,et al.  Superfast and Stable Structured Solvers for Toeplitz Least Squares via Randomized Sampling , 2014, SIAM J. Matrix Anal. Appl..

[13]  Daniel Kressner,et al.  A fast spectral divide‐and‐conquer method for banded matrices , 2018, Numer. Linear Algebra Appl..

[14]  Shivkumar Chandrasekaran,et al.  A Fast Solver for HSS Representations via Sparse Matrices , 2006, SIAM J. Matrix Anal. Appl..

[15]  R. Vandebril,et al.  Matrix Computations and Semiseparable Matrices , 2007 .

[16]  Y. Eidelman,et al.  Divide and Conquer Method for Eigenstructure of Quasiseparable Matrices Using Zeroes of Rational Matrix Functions , 2012 .

[17]  Shivkumar Chandrasekaran,et al.  A Superfast Algorithm for Toeplitz Systems of Linear Equations , 2007, SIAM J. Matrix Anal. Appl..

[18]  Stanley C. Eisenstat,et al.  A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..

[19]  J. Bunch,et al.  Rank-one modification of the symmetric eigenproblem , 1978 .

[20]  J. Cuppen A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .

[21]  Steffen Börm,et al.  Data-sparse Approximation by Adaptive ℋ2-Matrices , 2002, Computing.

[22]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[23]  Peter Benner,et al.  Computing All or Some Eigenvalues of Symmetric H-Matrices , 2012, SIAM J. Sci. Comput..

[24]  Victor Y. Pan,et al.  Parallel complexity of tridiagonal symmetric Eigenvalue problem , 1991, SODA '91.

[25]  Jianlin Xia,et al.  Analytical Low-Rank Compression via Proxy Point Selection , 2019, SIAM J. Matrix Anal. Appl..

[26]  I. Gohberg,et al.  The QR iteration method for Hermitian quasiseparable matrices of an arbitrary order , 2005 .

[27]  JAMES VOGEL,et al.  Superfast Divide-and-Conquer Method and Perturbation Analysis for Structured Eigenvalue Solutions , 2016, SIAM J. Sci. Comput..

[28]  Jianlin Xia,et al.  A Superfast Structured Solver for Toeplitz Linear Systems via Randomized Sampling , 2012, SIAM J. Matrix Anal. Appl..

[29]  JIANLIN XIA,et al.  Parallel Randomized and Matrix-Free Direct Solvers for Large Structured Dense Linear Systems , 2016, SIAM J. Sci. Comput..

[30]  Jianlin Xia,et al.  Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..

[31]  G. Stewart,et al.  Computing the eigenvalues and eigenvectors of symmetric arrowhead matrices , 1990 .

[32]  J. Xia,et al.  A stable matrix version of the fast multipole method: stabilization strategies and examples , 2021, ETNA - Electronic Transactions on Numerical Analysis.

[33]  Jianlin Xia,et al.  A Fast QR Algorithm for Companion Matrices , 2007 .

[34]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[35]  Per-Gunnar Martinsson,et al.  A Fast Randomized Algorithm for Computing a Hierarchically Semiseparable Representation of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[36]  J. Xia Multi-Layer Hierarchical Structures , 2021, CSIAM Transactions on Applied Mathematics.

[37]  Ren-Cang Li Solving secular equations stably and efficiently , 1993 .

[38]  Jack J. Dongarra,et al.  A fully parallel algorithm for the symmetric eigenvalue problem , 1985, PPSC.

[39]  Jean-Yves L'Excellent,et al.  Improving Multifrontal Methods by Means of Block Low-Rank Representations , 2015, SIAM J. Sci. Comput..

[40]  Jianlin Xia,et al.  On the Stability of Some Hierarchical Rank Structured Matrix Algorithms , 2016, SIAM J. Matrix Anal. Appl..

[41]  Raymond H. Chan,et al.  A Fast Randomized Eigensolver with Structured LDL Factorization Update , 2014, SIAM J. Matrix Anal. Appl..

[42]  Jianlin Xia,et al.  Randomized Sparse Direct Solvers , 2013, SIAM J. Matrix Anal. Appl..

[43]  V. Rokhlin,et al.  A fast algorithm for the inversion of general Toeplitz matrices , 2004 .