400-GHz Wireless Transmission of 60-Gb/s Nyquist-QPSK Signals Using UTC-PD and Heterodyne Mixer

We experimentally demonstrate an optical network compatible high-speed optoelectronics THz wireless transmission system operating at 400-GHz band. In the experiment, optical Nyquist quadrature phase-shift keying signals in a 12.5-GHz ultradense wavelength-division multiplexing grid is converted to the THz wireless radiation by photomixing in an antenna integrated unitravelling photodiode. The photomixing is transparent to optical modulation formats. We also demonstrate in the experiment the scalability of our system by applying single to four channels, as well as mixed three channels. Wireless transmission of a capacity of 60 Gb/s for four channels (15 Gb/s per channel) at 400-GHz band is successfully achieved, which pushes the data rates enabled by optoelectronics approach beyond the envelope in the frequency range above 300 GHz. Besides those, this study also validates the potential of bridging next generation 100 Gigabit Ethernet wired data stream for very high data rate indoor applications.

[1]  Jun Takeuchi,et al.  10-Gbit/s bi-directional and 20-Gbit/s uni-directional data transmission over a 120-GHz-band wireless link using a finline ortho-mode transducer , 2010, 2010 Asia-Pacific Microwave Conference.

[2]  V. Dyadyuk,et al.  A Multigigabit Millimeter-Wave Communication System With Improved Spectral Efficiency , 2007, IEEE Transactions on Microwave Theory and Techniques.

[3]  Toshio Morioka,et al.  60 Gbit/s 400 GHz wireless transmission , 2015, 2015 International Conference on Photonics in Switching (PS).

[4]  J. Federici,et al.  2.5 Gbit/s duobinary signalling with narrow bandwidth 0.625 terahertz source , 2011 .

[5]  I. Monroy,et al.  100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz). , 2011, Optics express.

[6]  H.T. Friis,et al.  A Note on a Simple Transmission Formula , 1946, Proceedings of the IRE.

[7]  Arnulf Leuther,et al.  Towards MMIC-Based 300GHz Indoor Wireless Communication Systems , 2015, IEICE Trans. Electron..

[8]  T. Zwick,et al.  Transmission of an 8-PSK modulated 30 Gbit/s signal using an MMIC-based 240 GHz wireless link , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[9]  K. Ishigaki,et al.  Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes , 2012 .

[10]  Philippe Nouvel,et al.  High-definition television transmission at 600 GHz combining THz photonics hotspot and high-sensitivity heterodyne receiver , 2014 .

[11]  Xiaodan Pang,et al.  25 Gbit/s QPSK Hybrid Fiber-Wireless Transmission in the W-Band (75–110 GHz) With Remote Antenna Unit for In-Building Wireless Networks , 2012, IEEE Photonics Journal.

[12]  M. Sato,et al.  $W$ -band Transmitter and Receiver for 10-Gb/s Impulse Radio With an Optical-Fiber Interface , 2009, IEEE Transactions on Microwave Theory and Techniques.

[13]  A. Leuther,et al.  220 GHz wireless data transmission experiments up to 30 Gbit/s , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[14]  Cyril C. Renaud,et al.  TeraHertz Photonics for Wireless Communications , 2015, Journal of Lightwave Technology.

[15]  O. Ambacher,et al.  Wireless sub-THz communication system with high data rate , 2013, Nature Photonics.

[16]  Katarzyna Balakier,et al.  Photonic generation for multichannel THz wireless communication. , 2014, Optics express.

[17]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .

[18]  T. Ishibashi,et al.  Widely Frequency Tunable Terahertz-Wave Emitter Integrating Uni-Traveling-Carrier Photodiode and Extended Bowtie Antenna , 2013 .

[19]  Jean-François Lampin,et al.  THz Communications using Photonics and Electronic Devices: the Race to Data-Rate , 2015 .

[20]  Ci-Ling Pan,et al.  Millimeter-wave photonic wireless links for very high data rate communication , 2011 .

[21]  Cheng Wang,et al.  0.14THz high speed data communication over 1.5 kilometers , 2012, 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves.

[22]  D. Meier,et al.  Ultra-broadband MMIC-based wireless link at 240 GHz enabled by 64GS/s DAC , 2014, 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[23]  Jun Terada,et al.  Terahertz wireless communications based on photonics technologies. , 2013, Optics express.

[24]  Guillermo Carpintero,et al.  Recent Progress and Future Prospect of Photonics-Enabled Terahertz Communications Research , 2015, IEICE Trans. Electron..

[25]  Emilien Peytavit,et al.  Ultrawide-Bandwidth Single-Channel 0.4-THz Wireless Link Combining Broadband Quasi-Optic Photomixer and Coherent Detection , 2014, IEEE Transactions on Terahertz Science and Technology.

[26]  Tadao Nagatsuma,et al.  24 Gbit/s data transmission in 300 GHz band for future terahertz communications , 2012 .

[27]  Thomas Schneider,et al.  Link Budget Analysis for Terahertz Fixed Wireless Links , 2012, IEEE Transactions on Terahertz Science and Technology.

[28]  Fan Li,et al.  A 400G optical wireless integration delivery system. , 2013, Optics express.

[29]  G. Ducournau,et al.  32 Gbit/s QPSK transmission at 385 GHz using coherent fibre-optic technologies and THz double heterodyne detection , 2015 .

[30]  Iwao Hosako,et al.  Optical and millimeter-wave radio seamless MIMO transmission based on a radio over fiber technology. , 2012, Optics express.