Multi-fidelity design of an integral thermal protection system for future space vehicle during re-entry

[1]  Tomas Nordstrand,et al.  Transverse shear stiffness of structural core sandwich , 1994 .

[2]  J. Vinson The Behavior of Sandwich Structures of Isotropic and Composite Materials , 1999 .

[3]  Christopher Clay,et al.  Structures and Materials Technologies for Extreme Environments Applied to Reusable Launch Vehicles , 2003 .

[4]  Elaine P. Scott,et al.  THERMAL CHARACTERIZATION OF HONEYCOMB CORE SANDWICH STRUCTURES , 1998 .

[5]  Kathryn E. Wurster,et al.  Metallic Thermal Protection System Requirements, Environments, and Integrated Concepts , 2004 .

[6]  Frank W. Zok,et al.  Design of metallic textile core sandwich panels , 2003 .

[7]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[8]  D. H. Greenshields,et al.  Entry vehicles for space programs , 1969 .

[9]  Wan-Shu Chang,et al.  Bending behavior of corrugated-core sandwich plates , 2005 .

[10]  Masaki Hojo,et al.  Evaluation of New Crack Suppression Method for Foam Core Sandwich Panel Via Fracture Toughness Tests and Analyses Under Mode-I Type Loading , 2009 .

[11]  John W. Hutchinson,et al.  Structurally optimized sandwich panels with prismatic cores , 2004 .

[12]  Raphael T. Haftka,et al.  Thermal Force and Moment Determination of an Integrated Thermal Protection System , 2010 .

[13]  S. Torquato,et al.  Simulated Properties of Kagomé and Tetragonal Truss Core Panels , 2003 .

[14]  W. C. Rochelle,et al.  Thermal protection system design studies for lunar crew module , 1995 .

[15]  Raphael T. Haftka,et al.  CORRECTION RESPONSE SURFACE APPROXIMATIONS FOR STRESS INTENSITY FACTORS OF A COMPOSITE STIFFENED PLATE , 1998 .

[16]  Anthony G. Evans,et al.  Strength optimization of metallic sandwich panels subject to bending , 2005 .

[17]  Ivan Bekey,et al.  NASA studies access to space , 1994 .

[18]  Marco Evangelos Biancolini,et al.  Evaluation of equivalent stiffness properties of corrugated board , 2005 .

[19]  D. Glass Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles , 2008 .

[20]  Raphael T. Haftka,et al.  Multi-Fidelity Design of an Integrated Thermal Protection System for Spacecraft Reentry , 2008 .

[21]  Herman L. Bohon,et al.  Radiative Metallic Thermal Protection Systems: A Status Report , 1977 .

[22]  Dean Kontinos,et al.  Surface Heating Effects of X-33 Vehicle Thermal-Protection-System Panel Bowing , 1999 .

[23]  G. Lee Ablation effects on the Apollo afterbody heat transfer. , 1969 .

[24]  P. F. Holloway,et al.  The Shuttle tile story , 1981 .

[25]  C. Libove,et al.  Elastic Constants for Corrugated-Core Sandwich Plates , 1951 .

[26]  Rezak Ayad,et al.  An analytical homogenization model for finite element modelling of corrugated cardboard , 2009 .

[27]  A. Evans,et al.  Measurement and Simulation of the Performance of a Lightweight Metallic Sandwich Structure With a Tetrahedral Truss Core , 2004 .

[28]  R. B. Erb,et al.  Apollo thermal-protection system development , 1968 .

[29]  Max L. Blosser,et al.  Fundamental Modeling and Thermal Performance Issues for Metallic Thermal Protection System Concept , 2004 .

[30]  Raphael T. Haftka,et al.  Micromechanical Analysis of Composite Corrugated-Core Sandwich Panels for Integral Thermal Protection Systems , 2007 .

[31]  Raphael T. Haftka,et al.  Multi-fidelity design of stiffened composite panel with a crack , 2002 .

[32]  Donald M. Curry,et al.  An Evaluation of Ablation Mechanisms for the Apollo Heat Shield Material , 1971 .

[33]  Aleksandra Krusper,et al.  Shear correction factors for corrugated core structures , 2007 .

[34]  R. Haftka Combining global and local approximations , 1991 .

[35]  J. Whitney Structural Analysis of Laminated Anisotropic Plates , 1987 .

[36]  M. Blosser Development of Metallic Thermal Protection Systems for the Reusable Launch Vehicle , 1996 .

[37]  John W. Hutchinson,et al.  Performance of sandwich plates with truss cores , 2004 .

[38]  B. Grossman,et al.  Variable-complexity response surface approximations for wing structural weight in HSCT design , 1996 .

[39]  Robert D. Braun,et al.  Parametric study of manned aerocapture. I - Earth return from Mars , 1992 .

[40]  David E. Myers,et al.  Parametric Weight Comparison of Advanced Metallic, Ceramic Tile, and Ceramic Blanket Thermal Protect , 2000 .

[41]  Satish K. Bapanapalli,et al.  Design of an integral thermal protection system for future space vehicles , 2007 .

[42]  Tomas Nordstrand,et al.  On the Elastic Stiffnesses of Corrugated Core Sandwich , 2001 .

[43]  Raphael T. Haftka,et al.  Multi-Fidelity Analysis of Corrugated-Core Sandwich Panels for Integrated Thermal Protection Systems , 2009 .

[44]  Carl C. Poteet,et al.  Preliminary Thermal-Mechanical Sizing of a Metallic Thermal Protection System , 2004 .

[45]  Raphael T. Haftka,et al.  Variable complexity design of composite fuselage frames by response surface techniques 1 This articl , 1998 .

[46]  L. Watson,et al.  Reasonable Design Space Approach to Response Surface Approximation , 1999 .

[47]  Mark Müller,et al.  Technologies for thermal protection systems applied on re-usable launcher , 2004 .

[48]  Richard W. Powell,et al.  Earth aerobraking strategies for manned return from Mars , 1992 .

[49]  Raphael T. Haftka,et al.  STRUCTURAL OPTIMIZATION OF A HAT STIFFENED PANEL BY RESPONSE SURFACE TECHNIQUES , 1997 .

[50]  Tat Seng Lok,et al.  Equivalent Stiffness Parameters of Truss-Core Sandwich Panel , 1999 .

[51]  Kang Hai Tan,et al.  Shear Stiffness DQy for C-Core Sandwich Panels , 1996 .

[52]  Bernard Grossman,et al.  Response Surface Models Combining Linear and Euler Aerodynamics for Supersonic Transport Design , 1999 .

[53]  B. Laub,et al.  Thermal protection system technology and facility needs for demanding future planetary missions , 2004 .

[54]  Edwin L. Fasanella,et al.  Permanent set of the Space Shuttle Thermal Protection System Reinforced Carbon–Carbon material , 2009 .

[55]  Patrice Cartraud,et al.  Homogenization of corrugated core sandwich panels , 2003 .

[56]  J. H. Boynton,et al.  Systems design experience from three manned space programs , 1969 .

[57]  Charles Libove,et al.  A general small-deflection theory for flat sandwich plates , 1948 .

[58]  Frank W. Zok,et al.  Design of Sandwich Panels With Prismatic Cores , 2006 .

[59]  Raphael T. Haftka,et al.  Sensitivity-based scaling for approximating. Structural response , 1993 .

[60]  Raphael T. Haftka,et al.  (Student Paper) Analysis and Design of Corrugated-Core Sandwich Panels for Thermal Protection Systems of Space Vehicles , 2006 .

[61]  Oscar A. Martinez Micromechanical analysis and design of an integrated thermal protection system for future space vehicles , 2007 .

[62]  Eric L. Christiansen,et al.  Penetration equations for thermal protection materials , 1997 .

[63]  John W. Hutchinson,et al.  Optimal truss plates , 2001 .